The scientific community's understanding of how the SARS-CoV-2 virus is transmitted and how to best mitigate its spread is improving daily. To help protect patients from acquiring COVID-19 from a dental office nosocomial infection, many state or local governments have classified dental treatments as "nonessential" and have paused routine dental care. Dentists have been instructed to perform only procedures designated as emergencies. Unfortunately, there is not a good understanding of what a dental emergency is among governmental leaders. What a government agency may perceive as an elective procedure may be seen as "essential" by the dental clinician responsible for maintaining the oral health of the patient. Each dental specialty understands the effects delayed care has on a patient's oral and systemic health. Dentistry has made extensive progress in improving oral health through prevention of the dental emergency. The dental profession must work together to prevent the reversal of the progress dentistry and patients have made. This American Academy of Implant Dentistry (AAID) White Paper discusses what COVID-19 is and how it impacts dental treatments, presents guidelines for dentistry in general and for dental implant related treatments, specifically. Recommendations for implant dentistry include the following: (1) what constitutes a dental implant related emergency, (2) how patients should be screened and triaged, (3) what personal protective equipment is necessary, (4) how operatories should be equipped, (5) what equipment should be used, and (6) what, when, and how procedures can be performed. This paper is intended to provide guidance for the dental implant practice so patients and dental health care providers can be safe, and offices can remain open and viable during the pandemic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1563/aaid-joi-D-20-00316 | DOI Listing |
J Appl Biomater Funct Mater
January 2025
Faculty of Dentistry, Department of Periodontics, Complutense University of Madrid, Madrid, Spain.
Peri-implant diseases, such as peri-implantitis, affect up to 47% of dental implant recipients, primarily due to biofilm formation. Current decontamination methods vary in efficacy, prompting interest in polymeric nanoparticles (NPs) for their antimicrobial and protein-specific cleaning properties. This study evaluated the efficacy of polymeric nanoparticles (NPs) in decontaminating titanium dental implants by removing proteinaceous pellicle layers and resisting recontamination.
View Article and Find Full Text PDFRegen Ther
March 2025
Department of Periodontology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo), 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
In modern dentistry, prosthetic approaches such as implants and dentures have been developed as symptomatic solutions for tooth loss. However, the complete regeneration of teeth and periodontal tissue, an ultimate aspiration of humanity, remains unachieved. Recent advancements in fundamental scientific technologies, including single-cell RNA sequencing and spatial transcriptomics, have significantly advanced our molecular understanding of tooth development, paving the way toward achieving this goal.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Prosthetic Dentistry, Biomaterials Division, Faculty of Dentistry, King Salman International University, El Tur, South Sinai, Egypt.
Purpose: Investigating high performance thermoplastic polymers as substitutes to titanium alloy, in fabrication of implants and attachments to support mandibular overdenture, aiming to overcome stress shielding effect of titanium alloy implants. AIM OF STUDY: Assessment of stress distribution in polymeric prosthetic components and bone around polymeric implants, in case of implant-supported mandibular overdenture.
Materials And Methods: 3D finite element model was established for mandibular overdenture, supported bilaterally by two implants at canine region, and retained by two ball attachments.
Sci Rep
January 2025
Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
While silk fibroin (SF) obtained from silkworm cocoons is expected to become a next-generation natural polymer, a fabrication method for SF-based artificial nerve conduits (SFCs) has not yet been established. Here, we report a bioresorbable SFC, fabricated using a novel freeze-thaw process, which ensures biosafety by avoiding any harmful chemical additives. The SFC demonstrated favorable biocompatibility (high hydrophilicity and porosity with a water content of > 90%), structural stability (stiffness, toughness, and elasticity), and biodegradability, making it an ideal candidate for nerve regeneration.
View Article and Find Full Text PDFJ Craniomaxillofac Surg
January 2025
Department of Oral and Maxillofacial Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan.
In the present study, porcine-derived collagen type I was covalently immobilized on the surface of titanium (Ti) implants via carboxyl groups introduced by bonded p-vinylbenzoic acid to investigate its in vitro biocompatibility with gingival stem cells and in vivo bone regeneration behavior in the edentulous ridges of Lanyu small-ear pigs at weeks 2 and 6 (short-term effectiveness) through micro-computed tomography and histological analysis. Analytical results found that gingival stem cells showed effective adhesion and spreading on these collagen-immobilized implant surfaces. After 2 and 6 weeks of healing, significant differences in Hounsfield units were observed among the control (week 2 (674.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!