A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Learning-Based Microultrasound System for the Detection of Inflammation of the Gastrointestinal Tract. | LitMetric

Inflammation of the gastrointestinal (GI) tract accompanies several diseases, including Crohn's disease. Currently, video capsule endoscopy and deep bowel enteroscopy are the main means for direct visualisation of the bowel surface. However, the use of optical imaging limits visualisation to the luminal surface only, which makes early-stage diagnosis difficult. In this study, we propose a learning enabled microultrasound ( μ US) system that aims to classify inflamed and non-inflamed bowel tissues. μ US images of the caecum, small bowel and colon were obtained from mice treated with agents to induce inflammation. Those images were then used to train three deep learning networks and to provide a ground truth of inflammation status. The classification accuracy was evaluated using 10-fold evaluation and additional B-scan images. Our deep learning approach allowed robust differentiation between healthy tissue and tissue with early signs of inflammation that is not detectable by current endoscopic methods or by human inspection of the μ US images. The methods may be a foundation for future early GI disease diagnosis and enhanced management with computer-aided imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2020.3021560DOI Listing

Publication Analysis

Top Keywords

microultrasound system
8
inflammation gastrointestinal
8
gastrointestinal tract
8
deep learning
8
inflammation
5
learning-based microultrasound
4
system detection
4
detection inflammation
4
tract inflammation
4
tract accompanies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!