Computational neuroscience models propose that working memory (WM) involves recurrent excitatory feedback loops that maintain firing over time along with lateral inhibition that prevents the spreading of activity to other feature values. In behavioral paradigms, this lateral inhibition appears to cause a repulsion of WM representations away from each other and from other strong sources of input. Recent computational models of schizophrenia have proposed that reduction in the strength of inhibition relative to strength of excitation may underlie impaired cognition, and this leads to the prediction that repulsion effects should be reduced in people with schizophrenia spectrum disorders (PSZ) relative to healthy control subjects (HCS). We tested this hypothesis in 2 experiments measuring WM repulsion effects. In Experiment 1, 45 PSZ and 32 HCS remembered the location of a single object relative to a centrally presented visual landmark and reported this location after a short delay. The reported location was repelled away from the landmark in both groups, but this repulsion effect was increased rather than decreased in PSZ relative to HCS. In Experiment 2, 41 PSZ and 34 HCS remembered 2 sequentially presented orientations and reported each orientation after a short delay. The reported orientations were biased away from each other in both groups, and this repulsion effect was again more pronounced in PSZ than in HCS. Contrary to the widespread hypothesis of reduced inhibition in schizophrenia, we provide robust evidence from 2 experiments showing that the behavioral performance of PSZ exhibited an exaggeration rather than a reduction of competitive inhibition. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7606631 | PMC |
http://dx.doi.org/10.1037/abn0000637 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!