Hybridization has the potential to generate or homogenize biodiversity and is a particularly common phenomenon in plants, with an estimated 25% of plant species undergoing interspecific gene flow. However, hybridization in Amazonia's megadiverse tree flora was assumed to be extremely rare despite extensive sympatry between closely related species, and its role in diversification remains enigmatic because it has not yet been examined empirically. Using members of a dominant Amazonian tree family (Brownea, Fabaceae) as a model to address this knowledge gap, our study recovered extensive evidence of hybridization among multiple lineages across phylogenetic scales. More specifically, using targeted sequence capture our results uncovered several historical introgression events between Brownea lineages and indicated that gene tree incongruence in Brownea is best explained by reticulation, rather than solely by incomplete lineage sorting. Furthermore, investigation of recent hybridization using ~19,000 ddRAD loci recovered a high degree of shared variation between two Brownea species that co-occur in the Ecuadorian Amazon. Our analyses also showed that these sympatric lineages exhibit homogeneous rates of introgression among loci relative to the genome-wide average, implying a lack of selection against hybrid genotypes and persistent hybridization. Our results demonstrate that gene flow between multiple Amazonian tree species has occurred across temporal scales, and contrasts with the prevailing view of hybridization's rarity in Amazonia. Overall, our results provide novel evidence that reticulate evolution influenced diversification in part of the Amazonian tree flora, which is the most diverse on Earth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mec.15616 | DOI Listing |
Front Plant Sci
December 2024
Biogeochemical Processes Department, Max Planck Institute for Biogeochemistry, Jena, Germany.
The Amazon forest is the largest source of isoprene emissions, and the seasonal pattern of leaf-out phenology in this forest has been indicated as an important driver of seasonal variation in emissions. Still, it is unclear how emissions vary between different leaf phenological types in this forest. To evaluate the influence of leaf phenological type over isoprene emissions, we measured leaf-level isoprene emission capacity and leaf functional traits for 175 trees from 124 species of angiosperms distributed among brevideciduous and evergreen trees in a central Amazon forest.
View Article and Find Full Text PDFMol Biol Rep
December 2024
Laboratório de Biologia Molecular (LBM), Centro de Bionegócios da Amazônia (CBA), Manaus, Amazonas, Brazil.
Background: Native to the Amazon region, Copaifera multijuga Hayne is a large tree (≈ 36 m in height) that is heavily exploited for extraction of its oleoresin. Many studies have addressed the phytochemical properties and applications of this raw material; however, there are few initiatives that have focused on the genetic characterization of native populations of this species. To this end, our objective was to develop microsatellite markers for C.
View Article and Find Full Text PDFAmazônia is a species-rich region of immense importance to Earth's water and carbon cycling. Photosynthesis drives the global carbon cycle, so understanding photosynthetic differences across diverse landscapes is a key task of ecophysiology and ecosystem science. Unfortunately, due to physiological and logistical constraints, ground-based photosynthesis data in Amazônia remains scarce, and the 'traditional' steady-state method (SS) of gas exchange is slow and inefficient.
View Article and Find Full Text PDFNat Ecol Evol
December 2024
Lancaster Environment Centre, Lancaster University, Lancaster, UK.
Anthropogenic landscape modification may lead to the proliferation of a few species and the loss of many. Here we investigate mechanisms and functional consequences of this winner-loser replacement in six human-modified Amazonian and Atlantic Forest regions in Brazil using a causal inference framework. Combining floristic and functional trait data for 1,207 tree species across 271 forest plots, we find that forest loss consistently caused an increased dominance of low-density woods and small seeds dispersed by endozoochory (winner traits) and the loss of distinctive traits, such as extremely dense woods and large seeds dispersed by synzoochory (loser traits).
View Article and Find Full Text PDFAn Acad Bras Cienc
December 2024
Universidade Federal de Pernambuco (UFPE), Centro de Biociências, Departamento de Antibióticos, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil.
Dinizia Excelsa is an Amazonian tree with a wide range of applications as a raw material in the industry. The objective of this study was to extract, characterize, and evaluate the biological activities of xylan extracted from Dinizia excelsa wood. The xylan was obtained in five stages, including delignification, precipitation, purification, and freeze-drying.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!