Ultra-high-resolution mass spectrometry, in the absence of chromatography, is finding its place for direct analyses of highly complex mixtures, such as those encountered during untargeted metabolomics screening. Advances, however, have been tempered by difficulties such as uneven signal suppression experienced during electrospray ionization. Moreover, ultra-high-resolution mass spectrometers that use Orbitrap and ICR analyzers both suffer from limited ion trapping capacities, owing principally to space-charge effects. This study has evaluated and contrasted the above two types of Fourier transform mass spectrometers for their abilities to detect and identify by accurate mass measurement, small molecule metabolites present in complex mixtures. For these direct introduction studies, the Orbitrap Fusion showed a major advantage in terms of speed of analysis, enabling detection of 218 of 440 molecules (<2 ppm error, 500 000 resolution at m/z 200) present in a complex mixture in 5 min. This approach is the most viable for high-throughput workflows, such as those used in investigations involving very large cohorts of metabolomics samples. From the same mixture, 183 unique molecules were observed by FT-ICR in the broadband mode, but this number was raised to 235 when "selected ion monitoring-stitching" (SIM-stitching) was employed (<0.1 ppm error, 7 T magnet with dynamic harmonization cell, 1.8 million resolution at m/z 200, both cases). SIM-stitching FT-ICR thus offered the most complete detection, which may be of paramount importance in situations where it is essential to obtain the most complete metabolic profile possible. This added completeness, however, came at the cost of a more lengthy analysis time (120 min including manual treatment). Compared to the data presented here, future automation of processing, plus the use of absorption mode detection, segmented ion detection (stepwise detection of smaller width m/z sections), and higher magnetic field strengths, can substantially reduce FT-ICR acquisition times.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jms.4613 | DOI Listing |
Front Pharmacol
January 2025
Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
This research was designed to investigate the metabolite profiling, phenolics content, and the trypanocidal, nematicidal, antibacterial, antifungal, and free radical scavenging properties of Motyka. The air-dried material was extracted successively with dichloromethane and methanol (UlMeOH). Two phases were obtained from the extract with dichloromethane, one soluble in methanol (UlDCM-s) and the other insoluble (UlDCM-i).
View Article and Find Full Text PDFTalanta
January 2025
Waltham Petcare Science Institute, Mars Petcare, Freeby Lane, Waltham on the Wolds, Melton Mowbray, LE14 4RT, United Kingdom. Electronic address:
Non-targeted chemical analysis is a powerful tool for exploration of the unknown chemistry of complex matrices such as food, biological, geochemical, environmental and even extra-terrestrial samples. It allows researchers to ask open, unbiased questions about their system chemistry. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) offers these options and has been widely used to study complex mixtures, with its unmatched mass resolution enabling direct infusion methods and eliminating the challenges of chromatographic alignment in large-scale longitudinal projects.
View Article and Find Full Text PDFSci Rep
January 2025
School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
As marine heatwaves and mass coral bleaching events rise in frequency and severity, there is an increasing need for high-resolution satellite products that accurately predict reef thermal environments over large spatio-temporal scales. Deciding which global sea surface temperature (SST) dataset to use for research or management depends in part on the desired spatial resolution. Here, we evaluate two SST datasets - the lower-resolution CoralTemp v3.
View Article and Find Full Text PDFWater Res
December 2024
Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé, building 1131, DK-8000, Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing, 100190, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and implementation, Middle East Technical University, Ankara, 06800, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
Terrestrial dissolved organic matter (DOM) is potentially reactive and, upon entering lake ecosystems, can be readily degraded to low-molecular-weight organic matter and dissolved CO. However, to date, there has been limited research on the links between long-term variation in the composition of DOM and CO emissions from lakes. Lake Taihu is a large, shallow, and hyper-eutrophic lake where DOM composition is strongly influenced by inputs from the rivers draining cultivated and urbanized landscapes.
View Article and Find Full Text PDFSci Rep
December 2024
State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
Bisphenol A (BPA, 4,4'-(propane-2,2-diyl)diphenol) is a common plasticizer that is very widespread in the environment and is also found at significant concentrations in the global oceans, due to contamination by plastics. Here we show that triplet sensitization is an important degradation pathway for BPA in natural surface waters, which could prevail if the water dissolved organic carbon is above 2-3 mg L. Bromide levels as per seawater conditions have the potential to slow down BPA photodegradation, a phenomenon that could not be offset by reaction of BPA with Br (second-order reaction rate constant of (2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!