Diabetic retinopathy, the most common complication of diabetes, is a neurodegenerative disease in the eye. And Parkinson's disease, affecting the health of 1-2% of people over 60 years old throughout the world, is the second largest neurodegenerative disease in the brain. As the understanding of diabetic retinopathy and Parkinson's disease deepens, the two diseases are found to show correlation in incidence, similarity in clinical presentation, and close association in pathophysiological mechanisms. To reveal the association between pathophysiological mechanisms of the two disease, in this review, the shared pathophysiological factors of diabetic retinopathy and Parkinson's disease are summarized and classified into dopaminergic system, circadian rhythm, neurotrophic factors, α-synuclein, and Wnt signaling pathways. Furthermore, similar and different mechanisms so far as the shared pathophysiological factors of the two disorders are discussed systematically. Finally, a brief summary and new perspectives are presented to provide new directions for further efforts on the association, exploration, and clinical prevention and treatment of diabetic retinopathy and Parkinson's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10571-020-00953-9DOI Listing

Publication Analysis

Top Keywords

diabetic retinopathy
20
parkinson's disease
20
retinopathy parkinson's
16
association pathophysiological
12
pathophysiological mechanisms
12
disease
8
neurodegenerative disease
8
shared pathophysiological
8
pathophysiological factors
8
diabetic
5

Similar Publications

Objective: This study investigates the relationship between the albumin-to-creatinine ratio and diabetic retinopathy (DR) in US adults using NHANES data from 2009 to 2016. This study assesses the predictive efficacy of the urinary serum albumin-to-creatinine ratio (UACR/SACR Ratio) against traditional biomarkers such as the serum albumin-to-creatinine ratio (SACR) and urinary albumin-to-creatinine ratio (UACR) for evaluating DR risk. Additionally, the study explores the potential of these biomarkers, both individually and in combination with HbA1c, for early detection and risk stratification of DR.

View Article and Find Full Text PDF

Purpose: To study choroidal thickness (CT) and luminal areas of choroidal vessels in the setting of fovea-off rhegmatogenous retinal detachment (RRD).

Methods: Twenty-seven eyes with RRD were prospectively studied before and after pars plana vitrectomy and SF6 tamponade, using swept-source optical coherence tomography (SS-OCT). CT was measured pre- and postoperatively both subfoveally and in attached macular areas.

View Article and Find Full Text PDF

Background: Faricimab is predominantlyprescribed for conditions such as age-related macular degeneration (AMD),diabetic macular edema (DME), and macular edema related to retinal veinocclusion (RVO-ME). Currently, a notable absence of large-scale, real-worldstudies focusing on the adverse reactions of faricimab exists.

Methods: Thisstudy assesses the side effects of faricimab by analyzing reports of adverseevents (AEs) from the FDA's AEReporting System (FAERS) database.

View Article and Find Full Text PDF

Background: This study evaluates retinal oxygen saturation and vessel density within the macula and correlates these measures in controls and subjects with type 2 diabetes (DM) with (DMR) and without (DMnR) retinopathy. Changes in retinal oxygen saturation have not been evaluated regionally in diabetic patients.

Methods: Data from seventy subjects (28 controls, 26 DMnR, and 16 DMR were analyzed.

View Article and Find Full Text PDF

Dual inhibition of the angiopoietin (Ang)/Tie and vascular endothelial growth factor (VEGF) signalling pathways in patients with retinal diseases, such as neovascular age-related macular degeneration (nAMD) and diabetic macular oedema (DME), may induce greater vascular stability and contribute to increased treatment efficacy and durability compared with treatments that only target the VEGF pathway. Faricimab, a bispecific intravitreal agent that inhibits both VEGF and Ang-2, is the first injectable ophthalmic drug to achieve treatment intervals of up to 16 weeks in Phase 3 studies for nAMD and DME while exhibiting improvements in visual acuity and retinal thickness. Data from real-world studies have supported the safety, visual and anatomic benefits and durability of faricimab, even in patients who were previously treated with other intravitreal agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!