Dopamine-Decorated TiO Nanoparticles in Water: A QM/MM vs an MM Description.

J Chem Theory Comput

Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 55, 20125 Milano, Italy.

Published: October 2020

Nanoparticle functionalization is a modern strategy in nanotechnology to build up devices for several applications. Modeling fully decorated metal oxide nanoparticles of realistic size (few nanometers) in an aqueous environment is a challenging task. In this work, we present a case study relevant for solar-light exploitation and for biomedical applications, i.e., a dopamine-functionalized TiO nanoparticle (1700 atoms) in bulk water, for which we have performed an extensive comparative investigation with both MM and QM/MM approaches of the structural properties and of the conformational dynamics. We have used a combined multiscale protocol for a more efficient exploration of the complex conformational space. On the basis of the results of this study and of some QM and experimental data, we have defined strengths and limitations of the existing force field parameters. Our findings will be useful for an improved modeling and simulation of many other similar hybrid bioinorganic nanosystems in an aqueous environment that are pivotal in a broad range of nanotechnological applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735700PMC
http://dx.doi.org/10.1021/acs.jctc.0c00483DOI Listing

Publication Analysis

Top Keywords

aqueous environment
8
dopamine-decorated tio
4
tio nanoparticles
4
nanoparticles water
4
water qm/mm
4
qm/mm description
4
description nanoparticle
4
nanoparticle functionalization
4
functionalization modern
4
modern strategy
4

Similar Publications

Nitrate-Photolysis Shortens the Lifetimes of Brown Carbon Tracers from Biomass Burning.

Environ Sci Technol

December 2024

State Ecology and Environment Scientific Observation and Research Station for the Yangtze River Delta at Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai 200030, China.

Biomass burning is an important source of brown carbon (BrC) aerosols, which influence climate by affecting the Earth's radiative balance. However, the transformation pathways of BrC chromophores, especially in the presence of photochemically active species, such as nitrate, are not well understood. In this study, the nitrate-mediated aqueous-phase photooxidation of three typical BrC chromophores from biomass burning was investigated, including 4-nitrocatechol, 3-nitrosalicylic acid, and 3,4-dinitrophenol.

View Article and Find Full Text PDF

Computer-aided design of caffeic acid derivatives: free radical scavenging activity and reaction force.

J Mol Model

December 2024

Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Avenida Ferrocarril San Rafael Atlixco, Número 186, Colonia Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Código Postal 09310, Ciudad de Mexico, Mexico.

Context: Antioxidants are known to play a beneficial role in human health. Caffeic acid has been previously recognized as efficient in this context. However, such a capability can be enhanced through structural modification.

View Article and Find Full Text PDF

This study investigates the effects of homopolymer additives and kinetic traps on the self-assembly of poly(ethylene glycol)-b-poly(lactide) (PEG-PLA) block copolymer (BCP) nanostructures in aqueous environments. By using non-adsorbing PEG homopolymers to kinetically trap PEG-PLA nanostructures, we demonstrate that varying the concentration and molecular weight of the added PEG induces a reversible micelle-to-vesicle transition. This transition is primarily driven by changes in the molecular geometry of the PEG-PLA BCPs due to excluded volume screening effects.

View Article and Find Full Text PDF

With the development of industry, agriculture, and aquaculture, excessive ammonia nitrogen mainly involving ionic ammonia (NH) and molecular ammonia (NH) has inevitable access to the aquatic environment, posing a severe threat to water safety. Photocatalytic technology shows great advantages for ammonia nitrogen removal, such as its efficiency, reusability, low cost, and environmental friendliness. In this study, CP (g-CN/CoP) composite materials, which exhibited high-efficiency ammonia nitrogen removal, were synthesized through a simple self-assembly method.

View Article and Find Full Text PDF

Visible light-driven photocatalytic degradation of atrazine in aqueous phase: impact of the g-CN/TiO/NiFeO nanocomposite activated by potassium peroxymonosulfate.

Environ Sci Pollut Res Int

December 2024

Department of Soil Sciences and Agri-Food Engineering, Centre in Green Chemistry & Catalysis, Centr'Eau, University Laval, Quebec, G1V 0A6, Canada.

The present investigation focused on the photocatalytic degradation of aqueous atrazine over g-CN/TiO/NiFeO composite in the presence of peroxymonosulfate (PMS) under visible light irradiation. The ternary photocatalyst was synthesized and characterized using XRD, FTIR, nitrogen sorption, SEM, UV-Vis, and photoluminescence spectroscopy. This catalyst exhibited full absorption in the visible spectrum at 815 nm and a high specific surface area of 105 m/g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!