Objective: To describe local experience in managing an outbreak of Candida auris in a tertiary-care setting.
Methods: In response to emerging Candida auris, an outbreak investigation was conducted at our hospital between March 2018 and June 2019. Once a patient was confirmed to have Candida auris, screening of exposed patients and healthcare workers (HCWs) was conducted. Postexposure screening included those who had had direct contact with or shared the same unit or ward with a laboratory-confirmed case. In response to the increasing number of cases, new infection control measures were implemented.
Results: In total, 23 primary patients were detected over 15 months. Postexposure screening identified 11 more cases, and all were patients. Furthermore, ~28.6% of patients probably caught infection in another hospital or in the community. Infection control measures were strictly implemented including hand hygiene, personal protective equipment, patient hygiene, environmental cleaning, cohorting of patients and HCWs, and avoiding the sharing of equipment. The wave reached a peak in April 2019, followed by a sharp decrease in May 2019 and complete clearance in June 2019. The case patients were equally distributed between intensive care units (51.4%) and wards (48.6%). More infections (62.9%) occurred than colonizations (37.1%). Urinary tract infection (42.9%) and candidemia (17.1%) were the main infections. In total, 7 patients (20.0%) died during hospitalization; among them, 6 (17.1%) died within 30 days of diagnosis.
Conclusions: Active screening of exposed patients followed by strict infection control measures, including environmental cleaning, was successful in ending the outbreak. Preventing future outbreaks is challenging due to outside sources of infection and environmental resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/ice.2020.414 | DOI Listing |
Int J Biol Macromol
January 2025
Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, Zip Code 60440-900 Fortaleza, CE, Brazil. Electronic address:
The ongoing problem of an increasing resistance of Candida spp. to available antifungals, has made it necessary the search for new therapeutic alternatives. The aim of this work was to develop a microsphere based on Caesalpinia ferrea galactomannan and Spondias purpurea L.
View Article and Find Full Text PDFBio Protoc
January 2025
Laboratory of Protein Translation and Fungal Pathogenesis, Regional Centre for Biotechnology, Faridabad, India.
, labeled an urgent threat by the CDC, shows significant resilience to treatments and disinfectants via biofilm formation, complicating treatment/disease management. The inconsistencies in biofilm architecture observed across studies hinder the understanding of its role in pathogenesis. Our novel in vitro technique cultivates biofilms on gelatin-coated coverslips, reliably producing multilayer biofilms with extracellular polymeric substances (EPS).
View Article and Find Full Text PDFInfect Drug Resist
January 2025
Department of Laboratory Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China.
is an emerging yeast species and an opportunistic pathogen. Due to its multi-drug resistance and ability to colonize and transmit, it poses a significant risk for outbreaks in medical institutions. In this study, we report the first case of detected in a pediatric bone marrow transplant child patient in Guangxi, China.
View Article and Find Full Text PDFMolecules
December 2024
Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA.
Recently expanded reports of multidrug-resistant fungal infections underscore the need to develop new and more efficient methods for antifungal drug discovery. A ubiquitous problem in natural product drug discovery campaigns is the rediscovery of known compounds or their relatives; accordingly, we have integrated Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) for structural dereplication and Yeast Chemical Genomics for bioprocess evaluation into a screening platform to identify such compounds early in the screening process. We identified 450 fractions inhibiting and the resistant strains of and among more than 40,000 natural product fractions.
View Article and Find Full Text PDFGenetics
January 2025
Dept. of Genetics, Stanford University, Stanford CA 94305-5120, USA.
The Candida Genome Database (CGD; www.candidagenome.org) is unique in being both a model organism database and a fungal pathogen database.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!