The masses of the lightest atomic nuclei and the electron mass are interlinked, and their values affect observables in atomic, molecular and neutrino physics, as well as metrology. The most precise values for these fundamental parameters come from Penning trap mass spectrometry, which achieves relative mass uncertainties of the order of 10. However, redundancy checks using data from different experiments reveal considerable inconsistencies in the masses of the proton, the deuteron and the helion (the nucleus of helium-3), suggesting that the uncertainty of these values may have been underestimated. Here we present results from absolute mass measurements of the deuteron and the HD molecular ion using C as a mass reference. Our value for the deuteron mass, 2.013553212535(17) atomic mass units, has better precision than the CODATA value by a factor of 2.4 and differs from it by 4.8 standard deviations. With a relative uncertainty of eight parts per trillion, this is the most precise mass value measured directly in atomic mass units. Furthermore, our measurement of the mass of the HD molecular ion, 3.021378241561(61) atomic mass units, not only allows a rigorous consistency check of our results for the masses of the deuteron (this work) and the proton, but also establishes an additional link for the masses of tritium and helium-3 (ref. ) to the atomic mass unit. Combined with a recent measurement of the deuteron-to-proton mass ratio, the uncertainty of the reference value of the proton mass can be reduced by a factor of three.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-020-2628-7 | DOI Listing |
Natl Sci Rev
January 2025
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
Lattice thermal conductivity ( ) is of great importance in basic sciences and in energy conversion applications. However, low- crystalline materials have only been obtained from heavy elements, which typically exhibit poor stability and possible toxicity. Thus, low- materials composed of light elements should be explored.
View Article and Find Full Text PDFSci Rep
January 2025
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.
This study illuminates the mineral carbonation potential of zeolite minerals. Zeolite minerals are common alteration products of basaltic rocks and are known for their ability to rapidly exchange their interstitial cations with those in aqueous solutions. A series of closed system batch reactor experiments was conducted at 60 °C by combining stilbite, a Ca-bearing zeolite, with 0.
View Article and Find Full Text PDFInorg Chem
January 2025
High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, Trombay 400085, India.
Determining the dissociation mechanism of perchlorate materials remains a top priority to address sustainability, handling, processing, and synthesis issues of new and existing high-energy density materials vital to many industrial processes. We determined the dissociation mechanism of diglycine perchlorate (DGPCl) using vibrational spectroscopy, which unveiled the formation of ammonium perchlorate (AP) and carbon at high temperatures. Our studies establish that DGPCl shows multiple phase transitions upon heating.
View Article and Find Full Text PDFJ Orthod Sci
November 2024
Odontostomatology Training and Research Unit, Felix Houphouët Boigny University, Abidjan, Ivory Coast.
Aim: The aim of this study was to make a laboratory assessment of pH influence on the kinetics of the release of nickel ions in artificial saliva.
Methods And Material: In this study, 15 basic orthodontic appliances are immersed in 15 polyethylene tubes each containing 40 ml of artificial saliva. Tubes were divided into three sub-groups of 5 tubes depending on the pH: pH 5, pH 7 and pH 8.
Sci Total Environ
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, China.
Until now, mass spectrometry databases lack molecular information of most organosilicon oligomers, and risk models needing accurate molecular descriptors are unavailable for these emerging contaminants with thousands of monomers. To address this issue, based on molecular/fragment ions and relative abundance from GC-Orbitrap-MS, this study developed appropriate classification (accuracies = 0.750-0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!