Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rechargeable lithium-ion batteries with high energy density that can be safely charged and discharged at high rates are desirable for electrified transportation and other applications. However, the sub-optimal intercalation potentials of current anodes result in a trade-off between energy density, power and safety. Here we report that disordered rock salt LiVO can be used as a fast-charging anode that can reversibly cycle two lithium ions at an average voltage of about 0.6 volts versus a Li/Li reference electrode. The increased potential compared to graphite reduces the likelihood of lithium metal plating if proper charging controls are used, alleviating a major safety concern (short-circuiting related to Li dendrite growth). In addition, a lithium-ion battery with a disordered rock salt LiVO anode yields a cell voltage much higher than does a battery using a commercial fast-charging lithium titanate anode or other intercalation anode candidates (LiVO and LiVTiS). Further, disordered rock salt LiVO can perform over 1,000 charge-discharge cycles with negligible capacity decay and exhibits exceptional rate capability, delivering over 40 per cent of its capacity in 20 seconds. We attribute the low voltage and high rate capability of disordered rock salt LiVO to a redistributive lithium intercalation mechanism with low energy barriers revealed via ab initio calculations. This low-potential, high-rate intercalation reaction can be used to identify other metal oxide anodes for fast-charging, long-life lithium-ion batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-020-2637-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!