Recent applications of decellularized tissue have included the use of hydrogels for injectable materials and three-dimensional (3D) bioprinting bioink for tissue regeneration. Microvascular formation is required for the delivery of oxygen and nutrients to support cell growth and regeneration in tissues and organs. The aim of the present study was to evaluate the formation of capillary networks in decellularized extracellular matrix (d-ECM) hydrogels. The d-ECM hydrogels were obtained from the small intestine submucosa (SIS) and the urinary bladder matrix (UBM) after decellularizing with sodium deoxycholate (SDC) and high hydrostatic pressure (HHP). The SDC d-ECM hydrogel gradually gelated, while the HHP d-ECM hydrogel immediately gelated. All d-ECM hydrogels had low matrix stiffness compared to that of the collagen hydrogel, according to a compression test. D-ECM hydrogels with various elastic moduli were obtained, irrespective of the decellularization method or tissue source. Microvascular-derived endothelial cells were seeded on d-ECM hydrogels. Few cells attached to the SDC d-ECM hydrogel with no network formation, while on the HHP d-ECM hydrogel, a capillary network structure formed between elongated cells. Long, branched networks formed on d-ECM hydrogels with lower matrix stiffness. This suggests that the capillary network structure that forms on d-ECM hydrogels is closely related to the matrix stiffness of the hydrogel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7503911PMC
http://dx.doi.org/10.3390/ijms21176304DOI Listing

Publication Analysis

Top Keywords

d-ecm hydrogels
28
d-ecm hydrogel
16
capillary network
12
matrix stiffness
12
d-ecm
11
hydrogels
9
decellularized tissue
8
network formation
8
endothelial cells
8
sdc d-ecm
8

Similar Publications

Biomaterial composition and surface charge play a critical role in macrophage polarization, providing a molecular cue for immunomodulation and tissue regeneration. In this study, we developed bifunctional hydrogel inks for accelerating M2 macrophage polarization and exosome (Exo) cultivation for wound healing applications. For this, we first fabricated polyamine-modified three-dimensional (3D) printable hydrogels consisting of alginate/gelatin/polydopamine nanospheres (AG/NSPs) to boost M2-exosome (M2-Exo) secretion.

View Article and Find Full Text PDF

Fabrication and optimization of multilayered composite scaffold made of sulfated alginate-based nanofiber/decellularized Wharton's jelly ECM for tympanic membrane tissue engineering.

Int J Biol Macromol

December 2023

ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran. Electronic address:

In this study, we fabricated a novel multilayer polyvinyl alcohol (PVA)/alginate sulfate (ALG-S) nanofiber/decellularized Wharton's Jelly ECM (d-ECM) composite for tympanic membrane perforations (TMPs) tissue engineering (TE). Initially, electrospun PVA/ALG-S scaffolds with different blend ratios were fabricated. The influence of ALG-S ratio on surface morphology, mechanical, physical and biological properties of the nanofibers was studied.

View Article and Find Full Text PDF

Recent applications of decellularized tissue have included the use of hydrogels for injectable materials and three-dimensional (3D) bioprinting bioink for tissue regeneration. Microvascular formation is required for the delivery of oxygen and nutrients to support cell growth and regeneration in tissues and organs. The aim of the present study was to evaluate the formation of capillary networks in decellularized extracellular matrix (d-ECM) hydrogels.

View Article and Find Full Text PDF

3-D physiomimetic extracellular matrix hydrogels provide a supportive microenvironment for rodent and human islet culture.

Biomaterials

April 2019

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, United States. Electronic address:

Organ-on-a-chip platforms serve as cost-efficient testbeds for screening pharmaceutical agents, mimicking natural physiology, and studying disease. In the field of diabetes, the development of an islet-on-a-chip platform would have broad implications in understanding disease pathology and discovering potential therapies. Islet microphysiological systems are limited, however, by their poor cell survival and function in culture.

View Article and Find Full Text PDF

Exploring the complicated development of tumors and metastases needs a deep understanding of the physical and biological interactions between cancer cells and their surrounding microenvironments. One of the major challenges is the ability to mimic the complex 3-D tissue microenvironment that particularly influences cell proliferation, migration, invasion, and apoptosis in relation to the extracellular matrix (ECM). Traditional cell culture is unable to create 3-D cell scaffolds resembling tissue complexity and functions, and, in the past, many efforts were made to realize the goal of obtaining cell clusters in hydrogels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!