MALDI-HRMS Imaging Maps the Localization of Skyrin, the Precursor of Hypericin, and Pathway Intermediates in Leaves of Species.

Molecules

Center for Mass Spectrometry (CMS), Department of Chemistry and Chemical Biology (CCB), Technische Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany.

Published: August 2020

and related species (Hypericaceae) are a reservoir of pharmacologically important secondary metabolites, including the well-known naphthodianthrone hypericin. However, the exact biosynthetic steps in the hypericin biosynthetic pathway, vis-à-vis the essential precursors and their localization in plants, remain unestablished. Recently, we proposed a novel biosynthetic pathway of hypericin, not through emodin and emodin anthrone, but skyrin. However, the localization of skyrin and its precursors in plants, as well as the correlation between their spatial distribution with the hypericin pathway intermediates and the produced naphthodianthrones, are not known. Herein, we report the spatial distribution of skyrin and its precursors in leaves of five in vitro cultivated plant species concomitant to hypericin, its analogs, as well as its previously proposed precursors emodin and emodin anthrone, using MALDI-HRMS imaging. Firstly, we employed HPLC-HRMS to confirm the presence of skyrin in all analyzed species, namely , , , and . Thereafter, MALDI-HRMS imaging of the skyrin-containing leaves revealed a species-specific distribution and localization pattern of skyrin. Skyrin is localized in the dark glands in and leaves together with hypericin but remains scattered throughout the leaves in , , and . The distribution and localization of related compounds were also mapped and are discussed concomitant to the incidence of skyrin. Taken together, our study establishes and correlates for the first time, the high spatial distribution of skyrin and its precursors, as well as of hypericin, its analogs, and previously proposed precursors emodin and emodin anthrone in the leaves of plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504759PMC
http://dx.doi.org/10.3390/molecules25173964DOI Listing

Publication Analysis

Top Keywords

maldi-hrms imaging
12
emodin emodin
12
emodin anthrone
12
skyrin precursors
12
spatial distribution
12
skyrin
9
localization skyrin
8
hypericin
8
hypericin pathway
8
pathway intermediates
8

Similar Publications

MALDI-HRMS Imaging Maps the Localization of Skyrin, the Precursor of Hypericin, and Pathway Intermediates in Leaves of Species.

Molecules

August 2020

Center for Mass Spectrometry (CMS), Department of Chemistry and Chemical Biology (CCB), Technische Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany.

and related species (Hypericaceae) are a reservoir of pharmacologically important secondary metabolites, including the well-known naphthodianthrone hypericin. However, the exact biosynthetic steps in the hypericin biosynthetic pathway, vis-à-vis the essential precursors and their localization in plants, remain unestablished. Recently, we proposed a novel biosynthetic pathway of hypericin, not through emodin and emodin anthrone, but skyrin.

View Article and Find Full Text PDF

Introduction: Kaurane diterpenes, notably xylopic acid, have demonstrated important biological activities including analgesia, anti-oxidant, antimicrobial and cytotoxicity. The fruits of Xylopia aethiopica have been reported to be a rich source of kaurane diterpenes.

Objective: An analytical approach for detailed imaging and characterisation of selected kaurane diterpenes was developed using matrix-assisted laser desorption/ionisation high-resolution mass spectrometry (MALDI-HRMS) imaging techniques and high-performance liquid chromatography-high resolution electrospray ionisation-tandem mass spectrometry (HPLC-HRESI-MS ) studies, respectively.

View Article and Find Full Text PDF

Spatial chemo-profiling of hypericin and related phytochemicals in Hypericum species using MALDI-HRMS imaging.

Anal Bioanal Chem

June 2015

Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Chair of Environmental Chemistry and Analytical Chemistry, TU Dortmund, Otto-Hahn-Str. 6, 44221, Dortmund, Germany,

Advanced analytical imaging techniques, including matrix-assisted laser desorption/ionization high-resolution mass spectrometry (MALDI-HRMS) imaging, can be used to visualize the distribution, localization, and dynamics of target compounds and their precursors with limited sample preparation. Herein we report an application of MALDI-HRMS imaging to map, in high spatial resolution, the accumulation of the medicinally important naphthodianthrone hypericin, its structural analogues and proposed precursors, and other crucial phytochemical constituents in the leaves of two hypericin-containing species, Hypericum perforatum and Hypericum olympicum. We also investigated Hypericum patulum, which does not contain hypericin or its protoforms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!