Introduction: Congenital fibrinogen disorders are characterized by heterogeneous clinical manifestations with mutations in the fibrinogen gene cluster. We aimed to describe the molecular genetics and clinical manifestations of fibrinogen abnormalities and perform genotype-phenotype correlations.

Materials And Methods: Genetic analysis of fibrinogen genes was performed by direct sequencing. The effect of the specific missense variants on fibrinogen structure and function was analyzed using PROVEAN and PolyPhen-2 algorithms and was predicted by protein modeling.

Results: Thirteen mutations, including five novel mutations, were identified in the three fibrinogen genes. There was poor correlation between genotypes and phenotypes. All but one of the novel mutations in subjects were predicted to be deleterious. Protein modeling predicted that multiple ienteractions with surrounding residues for novel variants were likely to result in congenital fibrinogen disorders.

Conclusion: This study in a relatively large cohort of Chinese patients with congenital fibrinogen disorders enabled the identification of five new fibrinogen missense mutations. In silico modeling may represent a valuable tool for understanding amino acid residues from novel variants leading to congenital fibrinogen disorders, but it should be followed by functional studies. Clinical presentation of fibrinogen disorders was variable, possibly due to genetic and environmental modifiers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcmd.2020.102489DOI Listing

Publication Analysis

Top Keywords

congenital fibrinogen
20
fibrinogen disorders
20
novel mutations
12
fibrinogen
12
chinese patients
8
patients congenital
8
clinical manifestations
8
fibrinogen genes
8
residues novel
8
novel variants
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!