Heterogeneity of Antiviral Responses in the Upper Respiratory Tract Mediates Differential Non-lytic Clearance of Influenza Viruses.

Cell Rep

Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA. Electronic address:

Published: September 2020

Influenza viruses initiate infection in the upper respiratory tract (URT), but early viral tropism and the importance of cell-type-specific antiviral responses in this tissue remain incompletely understood. By infecting transgenic lox-stop-lox reporter mice with a Cre-recombinase-expressing influenza B virus, we identify olfactory sensory neurons (OSNs) as a major viral cell target in the URT. These cells become infected, then eliminate the virus and survive in the host post-resolution of infection. OSN responses to infection are characterized by a strong induction of interferon-stimulated genes and more rapid clearance of viral protein relative to other cells in the epithelium. We speculate that this cell-type-specific response likely serves to protect the central nervous system from infection. More broadly, these results highlight the importance of evaluating antiviral responses across different cell types, even those within the same tissue, to more fully understand the mechanisms of viral disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7462569PMC
http://dx.doi.org/10.1016/j.celrep.2020.108103DOI Listing

Publication Analysis

Top Keywords

antiviral responses
12
upper respiratory
8
respiratory tract
8
influenza viruses
8
heterogeneity antiviral
4
responses
4
responses upper
4
tract mediates
4
mediates differential
4
differential non-lytic
4

Similar Publications

Colorectal cancer (CRC) is one of the most prevalent malignant tumors in the world, and its occurrence and development are closely related to the complex immune regulatory mechanisms. As the first barrier of the body's defense, innate immunity plays a key role in tumor immune surveillance and anti-tumor response, in which type I/III interferon (IFN) is an important mediator with significant antiviral and anti-tumor functions. 5-methylcytosine (m5C) modification of RNA is a key epigenetic regulation that promotes the expression of CRC oncogenes and immune-related genes.

View Article and Find Full Text PDF

The use of mixed-effect models to understand the evolution of the human immunodeficiency virus (HIV) and the progression of acquired immune deficiency syndrome (AIDS) has been the cornerstone of longitudinal data analysis in recent years. However, data from HIV/AIDS clinical trials have several complexities. Some of the most common recurrences are related to the situation where the HIV viral load can be undetectable, and the measures of the patient can be registered irregularly due to some problems in the data collection.

View Article and Find Full Text PDF

In recent years, there have been notable strides in developing mRNA vaccines, resulting in the creation of potent immunizations against diverse diseases. This review examines the most recent advancements in this field, focusing on their implications for future vaccine development. The pursuit of heightened vaccine efficacy is investigated through cutting-edge methods in adjuvant selection, delivery system optimization, and antigen selection.

View Article and Find Full Text PDF

Background: Qi pi pill (QPP), which contains Renshen, Baizhu, Fuling, Gancao, Chenpi, Shanyao, Lianzi, Shanzha, Liushenqu, Maiya, and Zexie, was recommended for preventing and treating COVID-19 in Shandong Province (China). However, the mechanism by which QPP treats infectious diseases remains unclear. This study aims to investigate the therapeutic effect of QPP in vitro and on acute influenza infection in mice, exploring its mechanism of action against influenza A virus (IAV).

View Article and Find Full Text PDF

Background: Direct acting antivirals (DAAs) have demonstrated remarkable efficacy, in achieving hepatitis C viral (HCV) elimination rates higher than 90%. One particular concern associated with treatment failure is the emergence of resistance associated substitutions (RASs) in the genome. The occurrence of RASs highlights the adaptability and resilience of the HCV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!