DNA replication initiates from multiple origins, and selective CDC7 kinase inhibitors (CDC7is) restrain cell proliferation by limiting origin firing. We have performed a CRISPR-Cas9 genome-wide screen to identify genes that, when lost, promote the proliferation of cells treated with sub-efficacious doses of a CDC7i. We have found that the loss of function of ETAA1, an ATR activator, and RIF1 reduce the sensitivity to CDC7is by allowing DNA synthesis to occur more efficiently, notably during late S phase. We show that partial CDC7 inhibition induces ATR mainly through ETAA1, and that if ATR is subsequently inhibited, origin firing is unleashed in a CDK- and CDC7-dependent manner. Cells are then driven into a premature and highly defective mitosis, a phenotype that can be recapitulated by ETAA1 and TOPBP1 co-depletion. This work defines how ATR mediates the effects of CDC7 inhibition, establishing the framework to understand how the origin firing checkpoint functions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2020.108096DOI Listing

Publication Analysis

Top Keywords

cdc7 inhibition
12
origin firing
12
dna synthesis
8
etaa1 atr
8
atr
5
atr restrains
4
restrains dna
4
synthesis mitotic
4
mitotic catastrophe
4
catastrophe response
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!