Trichoderma reesei XYR1 activates cellulase gene expression via interaction with the Mediator subunit TrGAL11 to recruit RNA polymerase II.

PLoS Genet

State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People's Republic of China.

Published: September 2020

The ascomycete Trichoderma reesei is a highly prolific cellulase producer. While XYR1 (Xylanase regulator 1) has been firmly established to be the master activator of cellulase gene expression in T. reesei, its precise transcriptional activation mechanism remains poorly understood. In the present study, TrGAL11, a component of the Mediator tail module, was identified as a putative interacting partner of XYR1. Deletion of Trgal11 markedly impaired the induced expression of most (hemi)cellulase genes, but not that of the major β-glucosidase encoding genes. This differential involvement of TrGAL11 in the full induction of cellulase genes was reflected by the RNA polymerase II (Pol II) recruitment on their core promoters, indicating that TrGAL11 was required for the efficient transcriptional initiation of the majority of cellulase genes. In addition, we found that TrGAL11 recruitment to cellulase gene promoters largely occurred in an XYR1-dependent manner. Although xyr1 expression was significantly tuned down without TrGAL11, the binding of XYR1 to cellulase gene promoters did not entail TrGAL11. These results indicate that TrGAL11 represents a direct in vivo target of XYR1 and may play a critical role in contributing to Mediator and the following RNA Pol II recruitment to ensure the induced cellulase gene expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467262PMC
http://dx.doi.org/10.1371/journal.pgen.1008979DOI Listing

Publication Analysis

Top Keywords

cellulase gene
20
gene expression
12
trgal11
9
trichoderma reesei
8
cellulase
8
rna polymerase
8
cellulase genes
8
pol recruitment
8
gene promoters
8
xyr1
6

Similar Publications

Revealing the roles of solar withering and shaking processes on oolong tea manufacturing from transcriptome and volatile profile analysis.

Food Res Int

February 2025

Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan; Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan. Electronic address:

Solar and indoor withering in the manufacturing process of semi-fermented oolong tea are crucial for aroma formation. While the processes have been established through accumulated experience, the underlying mechanisms remain largely unknown. This study identified pairs of gene and volatile organic compound (VOC) that were significantly correlated and up-regulated during solar withering and the first shaking, including lipoxygenase 8 (LOX8) with 3-hexenyl iso-butyrate, terpene synthase 2 (TPS2) with β-ocimene and linalool, as well as tryptophan synthase β-subunit 2 (TSB2) with indole.

View Article and Find Full Text PDF

Background: Grape (Vitis vinifera) crops encounter significant challenges in overcoming bud endodormancy in warm winter areas worldwide. Research on the mechanisms governing bud dormancy release has focused primarily on stress regulation; however, cell wall regulation of bud meristem regrowth mechanism during the dormancy release remains obscure.

Results: In this study, transmission electron microscopy revealed significant changes in the grape bud cell wall following hydrogen cyanamide (HC) treatment, accompanied by an increase in β-1,3-glucanase activity.

View Article and Find Full Text PDF

Protein ubiquitination is usually coupled with proteasomal degradation and is crucial in regulating protein quality. The E3 ubiquitin-protein ligase SCF (Skp1-Cullin-F-box) complex directly recognizes the target substrate via interaction between the F-box protein and the substrate. F-box protein is the determinant of substrate specificity.

View Article and Find Full Text PDF

Unlocking olive rhizobacteria: harnessing biocontrol power to combat olive root rot and promote plant growth.

Int Microbiol

January 2025

Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco.

Olive trees are susceptible to various diseases, notably root rot caused by Pythium spp., which presents significant challenges to cultivation. Conventional chemical control methods have limitations, necessitating exploration of eco-friendly alternatives like biological control strategies.

View Article and Find Full Text PDF

is an important medicinal herb; but its long-term cultivation often leads to continuous cropping problems. The underlying cause can be attributed to the accumulation of and alterations in root exudates; which interact with soil-borne pathogens; particularly ; triggering disease outbreaks that severely affect its yield and quality. It is therefore crucial to elucidate the mechanisms by which root exudates induce CCS043 outbreaks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!