In this work, we report an ultra-high sensitive (S = 1.4 × 10%), prompt response and recovering Pt/Pt+SiO cermet layer/GaN-based hydrogen (H) sensor. A sensor fabricated with a 15 nm cermet layer, comprising Pt and SiO, deposited between 15 nm Pt and GaN layers, exhibits significantly enhanced sensitivity in the detection of 4 %H by ≈ 300×, as compared to the reference Pt/GaN sensor at ambient temperature (300 K). Furthermore, the sensitivity of the our sensor shows very weak dependence on temperature (T) with maximum sensitivity ([Formula: see text]) reducing from 1.4 × 10% to 2.3 × 10% as temperature increases from 300 to 423 K. The shift in the threshold voltage of the test sensor (ΔV = 767 mV) increases by 50 % as compared to the shift in threshold voltage of the control sensor (ΔV = 511 mV) at 1 mA/cm. In addition, the cermet sensor also demonstrates fast response/recovery time, which reduces from 4.58 (2.36) seconds to 94 (39) milliseconds as the temperature increases from 300 to 423 K. The maximum sensitivity ([Formula: see text]), response (τ ) and recovery (τ ) times of the test sensor when exposed to 10 000 ppm of H are 3.9 × 10%, 30 secs and 30.1 secs respectively. The shift in the threshold voltage of the test sensor at 1 mA/cm when exposed to 100 ppm, 1000 ppm, 5000 ppm, and 10 000 ppm are 40 mV, 70 mV, 460 mV, and 600 mV, respectively. The 2-Dimensional (2D) trapping of H-atoms by the oxygen atoms present in the Pt+SiO cermet layer and porous/compact layer models explains the underlying mechanism, which results in a significant improvement of the sensing characteristics of the test sensor. The Thermionic Emission (TE) model effectively models the current density (J) - voltage (V) characteristics of both control and test sensors, with and without hydrogen. The prompt detection of high percentages of hydrogen in life-saving and commercial fuel applications becomes possible with the Pt+SiO cermet-based sensor, with its response and recovery times in the order of milliseconds for a temperature range of 363-423 K.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/abac33DOI Listing

Publication Analysis

Top Keywords

test sensor
16
sensor
12
shift threshold
12
threshold voltage
12
prompt response
8
response recovering
8
recovering pt/pt+sio
8
pt/pt+sio cermet
8
cermet layer/gan-based
8
layer/gan-based hydrogen
8

Similar Publications

Itching tends to worsen at night in patients with itchy skin diseases, such as atopic dermatitis. Unconscious scratching during sleep can exacerbate symptoms, cause sleep disturbances, or reduce quality of life. Therefore, evaluating nocturnal scratching behaviour is important for better patient care.

View Article and Find Full Text PDF

Mechanical ventilation is the process through which breathing support is provided to patients who face inconvenience during respiration. During the pandemic, many people were suffering from lung disorders, which elevated the demand for mechanical ventilators. The handling of mechanical ventilators is to be done under the assistance of trained professionals and demands the selection of ideal parameters.

View Article and Find Full Text PDF

Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.

View Article and Find Full Text PDF

Ethnic disparities in HbA1c and hypoglycemia among youth with type 1 diabetes: beyond access to technology, social deprivation and mean blood glucose.

BMJ Open Diabetes Res Care

January 2025

Diabetes and Endocrinology, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK

Introduction: The UK national pediatric diabetes audit reports higher HbA1c for children and young people (CYP) with type 1 diabetes (T1D) of Black ethnicity compared with White counterparts. This is presumably related to higher mean blood glucose (MBG) due to lower socioeconomic status (SES) and less access to technology. We aimed to determine if HbA1c ethnic disparity persists after accounting for the above variables.

View Article and Find Full Text PDF

An electrochemical aptasensor based on bimetallic carbon nanocomposites AuPt@rGO for ultrasensitive detection of adenosine on portable potentiostat.

Bioelectrochemistry

January 2025

Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, People's Republic of China. Electronic address:

Adenosine plays a crucial role in the cardiovascular and nervous systems of living organisms. Excessive adenosine can lead to arrhythmias or heart failure, making the accurate detection of adenosine highly valuable. Given the widespread use of sensors for detecting small molecules, we propose a sensitive electrochemical aptasensor for adenosine detection in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!