Early screening of PDAC (pancreatic ductal adenocarcinoma) based on plain CT (computed tomography) images is of great significance. Therefore, this work conducted a radiomics-aided diagnosis analysis of PDAC based on plain CT images. We explored a novel MSTA (multiresolution-statistical texture analysis) architecture to extract texture features and built machine learning models to classify PDACs and HPs (healthy pancreases). We also performed significance tests of differences to analyze the relationships between histopathological characteristics and texture features. The MSTA architecture originates from the analysis of histopathological characteristics and combines multiresolution analysis and statistical analysis to extract texture features. The MSTA architecture achieved better experimental results than the traditional architecture that scales the coefficient matrices of the multiresolution analysis. In the validation of the classifications, the MSTA architecture achieved an accuracy of 81.19% and an AUC (area under the ROC (receiver operating characteristic) curve) of 0.88 (95% confidence interval: 0.84-0.92). In the test of the classifications, it achieved an accuracy of 77.66% and an AUC of 0.79 (95% confidence interval: 0.71-0.87). Moreover, the significance tests of differences showed that the extracted texture features may be relevant to the histopathological characteristics. The MSTA architecture is beneficial for the radiomics-aided diagnosis of PDAC based on plain CT images. Its texture features can potentially enhance radiologists' imaging interpretation abilities.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2020.3021254DOI Listing

Publication Analysis

Top Keywords

texture features
20
based plain
16
msta architecture
16
radiomics-aided diagnosis
12
pdac based
12
plain images
12
histopathological characteristics
12
multiresolution-statistical texture
8
texture analysis
8
analysis architecture
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!