Two-dimensional carbon architectures are attracting tremendous interests for various promising applications due to their outstanding electronic and mechanical properties, although it is a great challenge to rationally devise facile and operative methodologies to engineer their structural traits owing to complex synthetic processes. Herein, for the first time, we fabricate two-dimensional carbon nanoribbons via direct thermal exfoliation of one-dimensional Ni-based metal-organic framework (MOF) nanorods, in which interconnected graphitic carbon nanocages are self-assembled into a belt-like superstructure with carbon-encapsulated Ni nanoparticles immobilized on the surface. Due to the unparalleled structural superiority, the MOF-derived carbon nanobelts exhibit excellent catalytic performances in electrocatalytic hydrogen evolution. Importantly, the practical synthetic strategy may trigger the rapid development of carbon-based superstructures in many frontier fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.0c02766 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Nanjing University of Aeronautics and Astronautics, College of Materials Science and Technology, No. 169 Sheng Tai West Road, Jiangning District, Nanjing, Jiangsu, China, 211106, Nanjing, CHINA.
Transition metal-based catalysts with high efficiency and stability for overall water splitting (OWS) offer significant potential for reducing green hydrogen production costs. Utilizing sputtering deposition technology, we propose a deposition-diffusion strategy to fabricate heterojunction coatings composed of ultrafine FeCoNi-C-N transition metal interstitial solid solution (TMISS) nanocrystals and amorphous nitrided carbon (NC) on the pre-deposited NC micro column arrays. The diffusion of C and N atoms results in the formation of uniformly distributed TMISS nanocrystals, with an average diameter of ~1.
View Article and Find Full Text PDFNano Lett
January 2025
Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, College of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
studies of the relationship between surface spin configurations and spin-related electrocatalytic reactions are crucial for understanding how magnetic catalysts enhance oxygen evolution reaction (OER) performance under magnetic fields. In this work, 2D FeSe nanosheets with rich surface spin configurations are synthesized via chemical vapor deposition. magnetic force microscopy and Raman spectroscopy reveal that a 200 mT magnetic field eliminates spin-disordered domain walls, forming a spin-ordered single-domain structure, which lowers the OER energy barrier, as confirmed by theoretical calculations.
View Article and Find Full Text PDFAcc Chem Res
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.
ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
Electrochemical activation of small molecules plays an essential role in sustainable electrosynthesis, environmental technologies, energy storage and conversion. The dynamic structural changes of catalysts during the course of electrochemical reactions pose challenges in the study of reaction kinetics and the design of potent catalysts. This short review aims to provide a balanced view of restructuring of electrocatalysts, including its fundamental thermodynamic origins and how these compare to those in thermal and photocatalysis, and highlighting both the positive and negative impacts of restructuring on the electrocatalyst performance.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sichuan University, School of Chemistry, 29 Wangjiang Road, 610064, Chengdu, CHINA.
Electrocatalytic transfer alkyne semi-hydrogenation with H2O as hydrogen source is industrially promising for selective electrosynthesis of high value-added alkenes while inhibiting byproduct alkanes. Although great achievements, their development has remarkably restricted by designing atomically sophisticated electrocatalysts. Here, we reported single-crystalline mesoporous copper nanoplates (meso-Cu PLs) as a robust yet highly efficient electrocatalyst for selective alkene electrosynthesis from transfer semi-hydrogenation reaction of alkyne in H2O.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!