Tackling membrane wetting is an ongoing challenge for large-scale applications of membrane distillation (MD). Herein, composite Janus MD membranes comprising an ultrathin dense hydrophilic layer are developed by layer-by-layer assembling cationic polyethyleneimine and anionic poly(sodium 4-styrenesulfonate) polyelectrolytes on a hydrophobic polyvinylidene fluoride substrate. Using surfactant-containing saline water as the feed with low surface tension, experiments reveal that the number of polyelectrolyte layers, rather than surface wettability or surface charge, determines the anti-wetting performance of the composite Janus membranes. More deposited layers yield higher wetting resistance. With the aid of positron annihilation spectroscopy, this study, for the first time, demonstrates the origin of the excellent wetting resistance of the composite Janus membranes. The effective pore size of the polyelectrolyte multilayer decreases with an increase in the number of the deposited layer. The membrane with an ultrathin hydrophilic multilayer of 48 nm has a sufficiently small pore size to sieve out surfactant molecules from the feed solution via a size exclusion mechanism, thus protecting the hydrophobic substrate from being wetted by the low-surface-tension feed water. This study may pave the way for developing next-generation anti-wetting Janus membranes for robust membrane distillation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.0c04242DOI Listing

Publication Analysis

Top Keywords

janus membranes
20
composite janus
16
ultrathin dense
8
dense hydrophilic
8
hydrophilic layer
8
membrane distillation
8
wetting resistance
8
pore size
8
membranes
5
membrane
5

Similar Publications

Arachidonate 15-lipoxygenase type B (ALOX15B) peroxidises polyunsaturated fatty acids to their corresponding fatty acid hydroperoxides, which are subsequently reduced into hydroxy-fatty acids. A dysregulated abundance of these biological lipid mediators has been reported in the skin and blood of psoriatic compared to healthy individuals. RNAscope and immunohistochemistry revealed increased ALOX15B expression in lesional psoriasis samples.

View Article and Find Full Text PDF

miR-224-5p Suppresses Non-Small Cell Lung Cancer via IL6ST-Mediated Regulation of the JAK2/STAT3 Pathway.

Thorac Cancer

January 2025

Department of Thoracic Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.

Background: Our study aimed to explore the specific functions and potential mechanisms of miR-224-5p in non-small cell lung cancer (NSCLC).

Methods: We first analyzed the expression of miR-224-5p in NSCLC patients and cell lines through the GEO database and qRT-PCR analysis. Then, we used MTT assays, wound healing assays, Transwell assays, and western blotting to evaluate the effects of miR-224-5p on NSCLC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT).

View Article and Find Full Text PDF

One-step fabrication of ultrathin porous Janus membrane within seconds for waterproof and breathable electronic skin.

Sci Bull (Beijing)

December 2024

State Key Laboratory of Advanced Fiber Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai Key Laboratory of Lightweight Composite, Donghua University, Shanghai 201620, China. Electronic address:

It remains a challenge for a simple and scalable method to fabricate ultrathin porous Janus membranes for stretchable on-skin electronics. Here, we propose a one-step droplet spreading phase separation strategy to prepare an ultrathin and easily collected Janus thermoplastic polyurethane (TPU) membrane within seconds. The metal-ion solvation structure mitigated migration kinetics to delay TPU solution demixing, promoting the further penetration of the coagulating solvent.

View Article and Find Full Text PDF

Endothelial STING-JAK1 interaction promotes tumor vasculature normalization and antitumor immunity.

J Clin Invest

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.

Stimulator of interferon genes (STING) agonists have been developed and tested in clinical trials for their antitumor activity. However, the specific cell population(s) responsible for such STING activation-induced antitumor immunity have not been completely understood. In this study, we demonstrated that endothelial STING expression was critical for STING agonist-induced antitumor activity.

View Article and Find Full Text PDF

The adhesion of nanoparticles to lipid vesicles causes curvature deformations to the membrane to an extent determined by the competition between the adhesive interaction and the membrane's elasticity. These deformations can extend over length scales larger than the size of a nanoparticle, leading to an effective membrane-curvature-mediated interaction between nanoparticles. Nanoparticles with uniform surfaces tend to aggregate into unidimensionally close-packed clusters at moderate adhesion strengths and endocytose at high adhesion strengths.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!