Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: To evaluate the potential of artificial intelligence (AI) to identify normal mammograms in a screening population.
Methods: In this retrospective study, 9581 double-read mammography screening exams including 68 screen-detected cancers and 187 false positives, a subcohort of the prospective population-based Malmö Breast Tomosynthesis Screening Trial, were analysed with a deep learning-based AI system. The AI system categorises mammograms with a cancer risk score increasing from 1 to 10. The effect on cancer detection and false positives of excluding mammograms below different AI risk thresholds from reading by radiologists was investigated. A panel of three breast radiologists assessed the radiographic appearance, type, and visibility of screen-detected cancers assigned low-risk scores (≤ 5). The reduction of normal exams, cancers, and false positives for the different thresholds was presented with 95% confidence intervals (CI).
Results: If mammograms scored 1 and 2 were excluded from screen-reading, 1829 (19.1%; 95% CI 18.3-19.9) exams could be removed, including 10 (5.3%; 95% CI 2.1-8.6) false positives but no cancers. In total, 5082 (53.0%; 95% CI 52.0-54.0) exams, including 7 (10.3%; 95% CI 3.1-17.5) cancers and 52 (27.8%; 95% CI 21.4-34.2) false positives, had low-risk scores. All, except one, of the seven screen-detected cancers with low-risk scores were judged to be clearly visible.
Conclusions: The evaluated AI system can correctly identify a proportion of a screening population as cancer-free and also reduce false positives. Thus, AI has the potential to improve mammography screening efficiency.
Key Points: • Retrospective study showed that AI can identify a proportion of mammograms as normal in a screening population. • Excluding normal exams from screening using AI can reduce false positives.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7880910 | PMC |
http://dx.doi.org/10.1007/s00330-020-07165-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!