Corynebacterium glutamicum is an essential industrial strain that has been widely harnessed for the production of all kinds of value-added products. Efficient multiplex gene editing and large DNA fragment deletion are essential strategies for industrial biotechnological research. Cpf1 is a robust and simple genome editing tool for simultaneous editing of multiplex genes. However, no studies on effective multiplex gene editing and large DNA fragment deletion by the CRISPR/Cpf1 system in C. glutamicum have been reported. Here, we developed a multiplex gene editing method by optimizing the CRISPR/Cpf1-RecT system and a large chromosomal fragment deletion strategy using the CRISPR/Cpf1-RecET system in C. glutamicum ATCC 14067. The CRISPR/Cpf1-RecT system exhibited a precise editing efficiency of more than 91.6% with the PAM sequences TTTC, TTTG, GTTG or CTTC. The sites that could be edited were limited due to the PAM region and the 1-7 nt at the 5' end of the protospacer region. Mutations in the PAM region increased the editing efficiency of the - 6 nt region from 0 to 96.7%. Using a crRNA array, two and three genes could be simultaneously edited in one step via the CRISPR/Cpf1-RecT system, and the efficiency of simultaneously editing two genes was 91.6%, but the efficiency of simultaneously editing three genes was below 10%. The editing efficiency for a deletion of 1 kb was 79.6%, and the editing efficiencies for 5- and 20 kb length DNA fragment deletions reached 91.3% and 36.4%, respectively, via the CRISPR/Cpf1-RecET system. This research provides an efficient and simple tool for C. glutamicum genome editing that can further accelerate metabolic engineering efforts and genome evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10295-020-02304-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!