Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Hemophilia B (HB) is an X-linked recessive inherited bleeding disorder caused by mutations in the F9 gene that lead to plasma factor IX deficiency. To identify the causative mutations in HB, a molecular analysis of HB pedigrees in China was performed.
Methods: Using next-generation sequencing (NGS) and an in-house bioinformatics pipeline, 76 unrelated HB pedigrees were analyzed. The mutations identified were validated by comparison with the results of Sanger sequencing or Multiplex Ligation-dependent Probe Amplification assays. The pathogenicity of the causative mutations was classified following the American College of Medical Genetics and Genomics guidelines.
Results: The mutation detection rate was 94.74% (72/76) using NGS. Of the 76 HB pedigrees analyzed, 59 causative variants were found in 72 pedigrees, with 38 (64.41%) missense mutations, 9 (15.25%) nonsense mutations, 2 (3.39%) splicing mutations, 5 (8.47%) small deletions, 4 (6.78%) large deletions, and 1 intronic mutation (1.69%). Of the 59 different F9 mutations, 10 were novel: c.190T>G, c.199G>T, c.290G>C, c.322T>A, c.350_351insACAATAATTCCTA, c.391+5delG, c.416G>T, c.618_627delAGCTGAAACC, c.863delA, and c.1024_1027delACGA. Of these 10 novel mutations, a mosaic mutation, c.199G>T(p.Glu67Ter), was identified in a sporadic HB pedigree. Using in-silico analysis, these novel variants were predicted to be disease-causing. However, no potentially causative mutations were found in the F9 coding sequences of the four remaining HB pedigrees. In addition, two HB pedigrees carrying additional F8/F9 mutations were discovered.
Conclusion: The identification of these mutations enriches the spectrum of F9 mutations and provides further insights into the pathogenesis of HB in the Chinese population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7667291 | PMC |
http://dx.doi.org/10.1002/mgg3.1482 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!