The increasing interest in flexible and wearable electronics has demanded a dramatic improvement of mechanical robustness in electronic devices along with high-resolution implemented architectures. In this study, a site-specific stress-diffusive manipulation is demonstrated to fulfill highly robust and ultraflexible amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) and integrated circuits. The photochemically activated combustion sol-gel a-IGZO TFTs on a mesa-structured polyimide show an average saturation mobility of 6.06 cm V s and a threshold voltage of -0.99 V with less than 9% variation, followed by 10 000 bending cycles with a radius of 125 μm. More importantly, the site-specific monolithic formation of mesa pillar-structured devices can provide fully integrated logic circuits such as seven-stage ring-oscillators, meeting the industrially needed device density and scalability. To exploit the underlying stress-diffusive mechanism, a physical model is provided by using a variety of chemical, structural, and electrical characterizations along with multidomain finite-element analysis simulation. The physical models reveal that a highly scalable and robust device can be achieved via the site-specific mesa architecture, by enabling generation of multineutral layers and fine-tuning the accumulated stresses on specific element of devices with their diffusion out into the boundary of the mesa regions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202003276DOI Listing

Publication Analysis

Top Keywords

highly scalable
8
scalable robust
8
thin-film transistors
8
integrated circuits
8
stress-diffusive manipulation
8
robust mesa-island-structure
4
mesa-island-structure metal-oxide
4
metal-oxide thin-film
4
transistors integrated
4
circuits enabled
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!