Organic Multiferroic Magnetoelastic Complexes.

Adv Mater

School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.

Published: October 2020

The design of crystal structures aids the discovery of interesting physical phenomena in organic crystals. In this work, the optimization of the coronene-tetracyanoquinodimethane (TCNQ) structure generates non-degenerate energy levels of spin-up and spin-down electrons after charge transfer, producing spontaneous spin polarization, leading to pronounced ferromagnetism. The deformed crystal lattice can significantly affect the saturation magnetization of organic ferromagnets to present a remarkable magnetoelastic coupling. Furthermore, the magnetic-field-induced lattice shrinkage of the ferromagnetic crystals supports a spin-lattice-interaction-dependent magnetoelastic coupling. This concept of organic magnetoelastic coupling will pave the way for the rapid mechanical control of spin polarization in organic multiferroic magnetoelastic materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202003293DOI Listing

Publication Analysis

Top Keywords

magnetoelastic coupling
12
organic multiferroic
8
multiferroic magnetoelastic
8
spin polarization
8
organic
5
magnetoelastic
5
magnetoelastic complexes
4
complexes design
4
design crystal
4
crystal structures
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!