It is a clinically well-established fact that patients with diabetes have very poor stroke outcomes. Yet, the underlying mechanisms remain largely unknown. Our previous studies showed that male diabetic animals show greater hemorrhagic transformation (HT), profound loss of cerebral vasculature in the recovery period, and poor sensorimotor and cognitive outcomes after ischemic stroke. This study aimed to determine the impact of iron chelation with deferoxamine (DFX) on (1) cerebral vascularization patterns and (2) functional outcomes after stroke in control and diabetic rats. After 8 weeks of type 2 diabetes induced by a combination of high-fat diet and low-dose streptozotocin, male control and diabetic animals were subjected to thromboembolic middle cerebral artery occlusion (MCAO) and randomized to vehicle, DFX, or tPA/DFX and followed for 14 days with behavioral tests. Vascular indices (vascular volume and surface area), neurovascular remodeling (AQP4 polarity), and microglia activation were measured. Brain microvascular endothelial cells (BMVEC) from control and diabetic animals were evaluated for the impact of DFX on ferroptotic cell death. DFX treatment prevented vasoregression and microglia activation while improving AQP4 polarity as well as blood-brain barrier permeability by day 14 in diabetic rats. These pathological changes were associated with improvement of functional outcomes. In control rats, DFX did not have an effect. Iron increased markers of ferroptosis and lipid reactive oxygen species (ROS) to a greater extent in BMVECs from diabetic animals, and this was prevented by DFX. These results strongly suggest that (1) HT impacts post-stroke vascularization patterns and recovery responses in diabetes, (2) treatment of bleeding with iron chelation has differential effects on outcomes in comorbid disease conditions, and (3) iron chelation and possibly inhibition of ferroptosis may provide a novel disease-modifying therapeutic strategy in the prevention of post-stroke cognitive impairment in diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7917163 | PMC |
http://dx.doi.org/10.1007/s12975-020-00844-7 | DOI Listing |
PLoS Biol
January 2025
Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan.
The unique architecture of the liver consists of hepatic lobules, dividing the hepatic features of metabolism into 2 distinct zones, namely the pericentral and periportal zones, the spatial characteristics of which are broadly defined as metabolic zonation. R-spondin3 (Rspo3), a bioactive protein promoting the Wnt signaling pathway, regulates metabolic features especially around hepatic central veins. However, the functional impact of hepatic metabolic zonation, regulated by the Rspo3/Wnt signaling pathway, on whole-body metabolism homeostasis remains poorly understood.
View Article and Find Full Text PDFAnnu Rev Pathol
January 2025
Diabetes Center and Department of Laboratory Medicine, University of California, San Francisco, California, USA;
The immune system plays fundamental roles in maintaining physiological homeostasis. With the increasing prevalence of obesity-a state characterized by chronic inflammation and systemic dyshomeostasis-there is growing scientific and clinical interest in understanding how obesity reshapes immune function. In this review, we propose that obesity is not merely an altered metabolic state but also a fundamentally altered immunological state.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Zoophysiology, Department of Biology, Aarhus University, Aarhus C, Denmark.
Aim: Snakes exhibit remarkable physiological shifts when their large meals induce robust postprandial growth after prolonged fasting. To understand the regulatory mechanisms underlying this rapid metabolic transition, we examined the regulation of protein synthesis in pythons, focusing on processes driving early postprandial tissue remodeling and growth.
Methods: Using the SUnSET method with puromycin labeling, we measured in vivo protein synthesis in fasting and digesting snakes at multiple post-feeding intervals.
FASEB J
January 2025
Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China.
Gestational Diabetes Mellitus (GDM) is the most frequent complication during pregnancy. Pharmacological interventions, such as peptide drugs that focused on improving the insulin sensitivity might be promising in the prevention and treatment of GDM. In this study, we aimed to investigate the role and mechanism of a novel peptide, named AGDMP1 (Anti-GDM peptide 1), which we previously identified lower in the serum of GDM patients using mass spectrometry, on the adipose insulin resistance in GDM.
View Article and Find Full Text PDFMol Cell Biochem
January 2025
Department of Cardiology, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory, Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
Increased activity of acid sphingomyelinase (ASMase) has been linked to diabetes and organ fibrosis. Nevertheless, the precise influence of ASMase on diabetic myocardial fibrosis and the corresponding molecular mechanisms remain elusive. In this study, we aim to elucidate whether ASMase contributes to diabetic myocardial fibrosis through the phosphorylation mediated by MAPK, thereby culminating in the development of diabetic cardiomyopathy (DCM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!