A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Physiologically Based Pharmacokinetic Model of Vismodegib: Deconvoluting the Impact of Saturable Plasma Protein Binding, pH-Dependent Solubility and Nonsink Permeation. | LitMetric

Vismodegib displays unique pharmacokinetic characteristics including saturable plasma protein binding to alpha-1 acid glycoprotein (AAG) and apparent time-dependent bioavailability leading to non-linear PK with dose and time, significantly faster time to steady-state and lower than predicted accumulation. Given these unique characteristics, a PBPK model was developed to explore mechanistic insights into saturable protein binding and complex oral absorption processes and de-convolute the impact of these independent non-linear processes on vismodegib exposure. Simcyp V18 was used for model development; oral absorption was characterized using the multi-layer gut wall (M-ADAM) model and mechanistic permeability model, incorporating transport across an unstirred boundary layer (UBL) between the luminal fluid and enterocyte in each segment of the gastrointestinal tract. PBPK simulations were compared with observed PK data from clinical trials in oncology patients and healthy subjects. Saturation of vismodegib protein binding to AAG led to substantially lower total drug accumulation, time to steady-state, and Css. For free exposure, Css and accumulation were unchanged, but time to steady-state was substantially reduced. Vismodegib oral absorption declined with both dose and dosing frequency; the concentration gradient driving vismodegib oral absorption declined with multiple doses, leading to a 32% decrease in vismodegib f from first dose to steady-state. Fed simulations suggested that increased solubility and dissolution are partially offset by reduced permeability across the UBL due to slower diffusion of micelle-bound drug. This work demonstrates the value of PBPK modeling to simultaneously capture and de-convolute multi-faceted absorption and disposition processes and provide mechanistic insights for compounds with complex pharmacokinetics.

Download full-text PDF

Source
http://dx.doi.org/10.1208/s12248-020-00503-7DOI Listing

Publication Analysis

Top Keywords

protein binding
16
oral absorption
16
time steady-state
12
saturable plasma
8
plasma protein
8
mechanistic insights
8
vismodegib oral
8
absorption declined
8
vismodegib
7
model
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!