Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: The purpose of the reported study was to investigate the value of cone-beam computed tomography (CBCT)-based radiomics for risk stratification and prediction of biochemical relapse in prostate cancer.
Methods: The study population consisted of 31 prostate cancer patients. Radiomics features were extracted from weekly CBCT scans performed for verifying treatment position. From the data, logistic-regression models were learned for establishing tumor stage, Gleason score, level of prostate-specific antigen, and risk stratification, and for predicting biochemical recurrence. Performance of the learned models was assessed using the area under the receiver operating characteristic curve (AUC-ROC) or the area under the precision-recall curve (AUC-PRC).
Results: Results suggest that the histogram-based Energy and Kurtosis features and the shape-based feature representing the standard deviation of the maximum diameter of the prostate gland during treatment are predictive of biochemical relapse and indicative of patients at high risk.
Conclusion: Our results suggest the usefulness of CBCT-based radiomics for treatment definition in prostate cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00066-020-01677-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!