Leishmaniasis is one of the most important tropical neglected diseases according to the World Health Organization. Even after more than a century, we still have few drugs for the disease therapy and their great toxicity and side effects put in check the treatment control program around the world. Moreover, the emergence of strains resistant to conventional drugs, co-infections such as HIV/Leishmania spp., the small therapeutic arsenal (pentavalent antimonials, amphotericin B and formulations, and miltefosine), and the low investment for the discovery/development of new drugs force researchers and world health agencies to seek new strategies to combat and control this important neglected disease. In this context, the aim of this review is to summarize new advances and new strategies used on leishmaniasis therapy addressing alternative and innovative treatment paths such as physical and local/topical therapies, combination or multi-drug uses, immunomodulation, drug repurposing, and the nanotechnology-based drug delivery systems.Key points• The treatment of leishmaniasis is a challenge for global health agencies.• Toxicity, side effects, reduced therapeutic arsenal, and drug resistance are the main problems.• New strategies and recent advances on leishmaniasis treatment are urgent.• Immunomodulators, nanotechnology, and drug repurposing are the future of leishmaniasis treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-020-10856-w | DOI Listing |
Pharmaceutics
January 2025
Programa de Pós-Graduação em Pesquisa Translacional em Fármacos e Medicamentos (PPG-PTFM), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil.
Amphotericin B (AmB) is a commonly utilized antifungal agent, which is also recommended for the treatment of certain neglected tropical diseases, including leishmaniasis. However, its clinical application is constrained because of its poor oral bioavailability and adverse effects, prompting the investigation of alternative drug delivery systems. Polymeric nanoparticles (PNPs) have gained attention as a potential drug delivery vehicle, providing advantages such as sustained release and enhanced bioavailability, and could have potential as AmB carriers.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
Background/objectives: New drugs are required for the treatment of liver cancers and protozoal parasite infections. Analogs of the known anticancer active and antileishmanial 2',4',6'-trimethoxychalcone SU086 were prepared and investigated.
Methods: The chalcones were prepared according to the Claisen-Schmidt condensation protocol and analyzed.
Pharmaceuticals (Basel)
December 2024
Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana.
: Pteridine reductase 1 (PTR1) has been one of the prime targets for discovering novel antileishmanial therapeutics in the fight against Leishmaniasis. This enzyme catalyzes the NADPH-dependent reduction of pterins to their tetrahydro forms. While chemotherapy remains the primary treatment, its effectiveness is constrained by drug resistance, unfavorable side effects, and substantial associated costs.
View Article and Find Full Text PDFMolecules
January 2025
Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil.
Leishmaniasis is a neglected tropical disease caused by a protozoan of the genus Leishmania, which has visceral and cutaneous forms. The symptoms of leishmaniasis include high fever and weakness, and the cutaneous infection also causes lesions under the skin. The drugs used to treat leishmaniasis have become less effective due to the resistance mechanisms of the protozoa.
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
Thiadiazine thione (THTT) has gained significant interest owing to its pharmacological potentials, particularly its antiparasitic and anti-inflammatory properties. Leishmaniasis is a clinical syndrome caused by infection with species and is associated with an inflammatory response and nociception. The available treatments against leishmaniasis are inadequate, as they are associated with high cost, toxicity, and increased resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!