Pathogen spillover represents an important cause of biodiversity decline. For wild bee species such as bumblebees, many of which are in decline, correlational data point towards viral spillover from managed honeybees as a potential cause. Yet, impacts of these viruses on wild bees are rarely evaluated. Here, in a series of highly controlled laboratory infection assays with well-characterized viral inocula, we show that three viral types isolated from honeybees (deformed wing virus genotype A, deformed wing virus genotype B and black queen cell virus) readily replicate within hosts of the bumblebee . Impacts of these honeybee-derived viruses - either injected or fed - on the mortality of workers were, however, negligible and probably dependent on host condition. Our results highlight the potential threat of viral spillover from honeybees to novel wild bee species, though they also underscore the importance of additional studies on this and other wild bee species under field-realistic conditions to evaluate whether pathogen spillover has a negative impact on wild bee individuals and population fitness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428241PMC
http://dx.doi.org/10.1098/rsos.200480DOI Listing

Publication Analysis

Top Keywords

wild bee
20
bee species
12
novel wild
8
pathogen spillover
8
viral spillover
8
deformed wing
8
wing virus
8
virus genotype
8
wild
6
bee
5

Similar Publications

Introduction: The global decline in biodiversity and insect populations highlights the urgent need to conserve ecosystem functions, such as plant pollination by solitary bees. Human activities, particularly agricultural intensification, pose significant threats to these essential services. Changes in land use alter resource and nest site availability, pesticide exposure and other factors impacting the richness, diversity, and health of solitary bee species.

View Article and Find Full Text PDF

Wild solitary bees face a host of challenges from the simplification of landscapes and biodiversity loss to invasive species and urbanization. Pollinator researchers and restoration workers thus far gave much attention to increase flower cover to reduce the impact of these anthropogenic pressures. Over 30% of bee species need nonfloral resources such as leaves and resin for their survival and reproduction.

View Article and Find Full Text PDF

Building a reliable 16S mini-barcode library of wild bees from Occitania, south-west of France.

Biodivers Data J

January 2025

Dynafor, INRAE, INP, ENSAT, 31326, Castanet Tolosan, France Dynafor, INRAE, INP, ENSAT, 31326 Castanet Tolosan France.

Background: DNA barcoding and metabarcoding are now powerful tools for studying biodiversity and especially the accurate identification of large sample collections belonging to diverse taxonomic groups. Their success depends largely on the taxonomic resolution of the DNA sequences used as barcodes and on the reliability of the reference databases. For wild bees, the barcode sequences coverage is consistently growing in volume, but some incorrect species annotations need to be cared for.

View Article and Find Full Text PDF

AmelOBP4: an antenna-specific odor-binding protein gene required for olfactory behavior in the honey bee (Apis mellifera).

Front Zool

January 2025

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, People's Republic of China.

Background: Odorant binding proteins (OBPs) initiate the process of odorant perception. Numerous investigations have demonstrated that OBPs bind a broad variety of chemicals and are more likely to carry pheromones or odor molecules with high binding affinities. However, few studies have investigated its effects on insect behavior.

View Article and Find Full Text PDF

Wild bee communities are the target of various conservation and ecological restoration programs. Strategic conservation can influence bee communities visiting fields and help mitigate pollinator limitations in fruit production. However, planning compatible conservation strategies and gauging their effectiveness requires understanding how local communities vary across space and time in crops and adjacent semi-natural areas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!