Hydrolysis-resistant and stress-buffering bifunctional polyurethane adhesive for durable dental composite restoration.

R Soc Open Sci

State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.

Published: July 2020

A new elastic polyurethane (PU) adhesive was reported in this study to improve the stability and durability of the dental adhesion interface. A polyurethane oligomer was synthesized by the solution polymerization method, and a diluent and solvent were added to prepare PU adhesives. The water sorption, water solubility, contact angle, thermal stability, degree of conversion and mechanical properties of the PU adhesives were evaluated. Experimental applications for tooth restoration (microtensile bond strength and microleakage) were also performed, and cytotoxicity test was carried out. The water sorption and solubility of the PU adhesives were significantly lower than those of three commercial adhesives. The microtensile bond strength of the PU adhesives was improved after thermocycling test, and the extent of microleakage was diminished when compared with that of commercial adhesives. Biocompatibility testing demonstrated that the PU adhesive was non-toxic to L929 fibroblasts. This study shows the ability of PU adhesive to improve the stability and durability of the dental adhesion interface and may refocus the attention of scientists from rigid bonding to flexible bonding for dental adhesion, and it sheds light on a new strategy for the stable and durable bonding interface of dentine adhesives.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428285PMC
http://dx.doi.org/10.1098/rsos.200457DOI Listing

Publication Analysis

Top Keywords

dental adhesion
12
polyurethane adhesive
8
improve stability
8
stability durability
8
durability dental
8
adhesion interface
8
water sorption
8
microtensile bond
8
bond strength
8
commercial adhesives
8

Similar Publications

The Biological Properties of Co-Doped Monetite Are Influenced by Thermal Treatment.

J Biomed Mater Res B Appl Biomater

February 2025

Bioassays and Cellular Dynamics Lab, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP: São Paulo State University, São Paulo, Brazil.

Calcium phosphates, notably monetite, are valued biomaterials for bone applications owing to their osteogenic properties and rapid uptake by bone cells. This study investigates the enhancement of these properties through Cobalt doping, which is known to induce hypoxia and promote bone cell differentiation. Heat treatments at 700°C, 900°C, and 1050°C are applied to both monetite and Cobalt-doped monetite, facilitating the development of purer, more crystalline phases with varied particle sizes and optimized cellular responses.

View Article and Find Full Text PDF

Graphene-Based Materials for Bone Regeneration in Dentistry: A Systematic Review of In Vitro Applications and Material Comparisons.

Nanomaterials (Basel)

January 2025

Dermatology, Stomatology, Radiology and Physical Medicine, Hospital Morales Meseguer, Medicine School, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain.

Introduction: Graphene, a two-dimensional arrangement of carbon atoms, has drawn significant interest in medical research due to its unique properties. In the context of bone regeneration, graphene has shown several promising applications. Its robust structure, electrical conductivity, and biocompatibility make it an ideal candidate for enhancing bone tissue regeneration and repair processes.

View Article and Find Full Text PDF

To overcome limitations of dentin bonding due to collagen degradation at a bonded interface, incorporating bioactive glass (BAG) into dentin adhesives has been proposed to enhance remineralization and improve bonding durability. This study evaluated sol-gel-derived BAGs (BAG79, BAG87, BAG91, and BAG79F) and conventional melt-quenched BAG (BAG45) incorporated into dentin adhesive to assess their remineralization and mechanical properties. The BAGs were characterized by using field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy for surface morphology.

View Article and Find Full Text PDF

Treating the surfaces of dental implants in an alkaline medium allows us to obtain microstructures of sodium titanate crystals that favor the appearance of apatite in the physiological environment, producing osteoconductive surfaces. In this research, 385 discs made of titanium used in dental implants underwent different NaOH treatments with a 6M concentration at 600 °C and cooling rates of 20, 50, 75, and 115 °C/h. Using high-resolution electron microscopy, the microstructures were observed, and the different crystal sizes were determined and compared with control samples (those without biomimetic treatment).

View Article and Find Full Text PDF

Comparative Investigation of Vortex and Direct Plasma Discharge for Treating Titanium Surface.

Biomimetics (Basel)

December 2024

Plasmapp R&D Center, 9, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea.

Numerous studies have investigated the surface treatment of implants using various types of plasma, including atmospheric pressure plasma and vacuum plasma, to remove impurities and increase surface energy, thereby enhancing osseointegration. Most previous studies have focused on generating plasma directly on the implant surface by using the implant as an electrode for plasma discharge. However, plasmas generated under atmospheric and moderate vacuum conditions often have a limited plasma volume, meaning the shape of the electrodes significantly influences the local electric field characteristics, which in turn affects plasma behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!