A novel role of Krüppel-like factor 8 as an apoptosis repressor in hepatocellular carcinoma.

Cancer Cell Int

Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China.

Published: August 2020

Background: Krüppel-like factor 8 (KLF8), a cancer-promoting factor that regulates critical gene transcription and cellular cancer-related events, has been implicated in tumor development and progression. However, the functional role of KLF8 in the pathogenesis of hepatocellular carcinoma (HCC) remains largely unknown.

Methods: The gene expression patterns and genome-wide regulatory profiles of HCC cells after KLF8 knockout were analyzed by using RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) of histone H3 lysine 27 acetylation (H3K27ac) combined with bioinformatics analysis. Transcription factor-binding motifs that recognized by KLF8 were evaluated by motif analysis. For the predicted target genes, transcriptional changes were examined by ChIP, and loss of function experiments were conducted by siRNA transfection.

Results: KLF8 functioned as a transcription repressor in HCC and mainly regulated apoptotic-related genes directly. A total of 1,816 differentially expressed genes after KLF8 knockout were identified and significantly corresponded to global changes in H3K27ac status. Furthermore, two predicted target genes, high-mobility group AT-hook 2 (HMGA2) and matrix metalloproteinase 7 (MMP7), were identified as important participants in KLF8-mediated anti-apoptotic effect in HCC. Knockout of KLF8 enhanced cell apoptosis process and caused increase in the associated H3K27ac, whereas suppression HMGA2 or MMP7 attenuated these biological effects.

Conclusions: Our work suggests a novel role and mechanism for KLF8 in the regulation of cell apoptosis in HCC and facilitates the discovery of potential therapeutic targets for HCC treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456055PMC
http://dx.doi.org/10.1186/s12935-020-01513-3DOI Listing

Publication Analysis

Top Keywords

novel role
8
krüppel-like factor
8
hepatocellular carcinoma
8
klf8
8
klf8 knockout
8
predicted target
8
target genes
8
cell apoptosis
8
hcc
6
role krüppel-like
4

Similar Publications

Characterisation of a Betasatellite Associated With Tomato Yellow Leaf Curl Guangdong Virus and Discovery of an Unusual Modulation of Virus Infection Associated With C4 Protein.

Mol Plant Pathol

January 2025

Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.

Tomato yellow leaf curl Guangdong virus (TYLCGdV), a monopartite begomovirus first identified in 2004, remains poorly characterised. In this study, we demonstrate that TYLCGdV associates with a betasatellite, TYLCGdB, and the βC1 protein encoded by TYLCGdB is essential for symptom development. We also explore the role of TYLCGdV C4 protein by generating a C4-deficient infectious clone (TYLCGdV), revealing a dynamic role for TYLCGdV C4.

View Article and Find Full Text PDF

Exome sequencing reveals a rare damaging variant in GRIN2C in familial late-onset Alzheimer's disease.

Alzheimers Res Ther

January 2025

Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder with both genetic and environmental factors contributing to its pathogenesis. While early-onset AD has well-established genetic determinants, the genetic basis for late-onset AD remains less clear. This study investigates a large Italian family with late-onset autosomal dominant AD, identifying a novel rare missense variant in GRIN2C gene associated with the disease, and evaluates the functional impact of this variant.

View Article and Find Full Text PDF

The SIRT5-JIP4 interaction promotes osteoclastogenesis by modulating RANKL-induced signaling transduction.

Cell Commun Signal

January 2025

Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.

Receptor activator of nuclear factor kappa-B ligand (RANKL) initiates a complex signaling cascade that is crucial for inducing osteoclast differentiation and activation. RANKL-induced signaling has been analyzed in detail, and the involvement of TNF receptor-associated factor 6 (TRAF6), calmodulin-dependent protein kinase (CaMK), NF-κB, mitogen-activated protein kinase (MAPK), activator protein-1 (AP-1), and molecules that contain an immunoreceptor tyrosine-based activation motif (ITAM) has been reported. However, the precise molecular steps that regulate RANKL signaling remain largely unknown.

View Article and Find Full Text PDF

Background: Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!