Influenza A virus (IAV) is a major pathogen of the human respiratory tract, where the virus coexists and interacts with bacterial populations comprising the respiratory tract microbiome. Synergies between IAV and respiratory bacterial pathogens promote enhanced inflammation and disease burden that exacerbate morbidity and mortality. We demonstrate that direct interactions between IAV and encapsulated bacteria commonly found in the respiratory tract promote environmental stability and infectivity of IAV. Antibiotic-mediated depletion of the respiratory bacterial flora abrogated IAV transmission in ferret models, indicating that these virus-bacterium interactions are operative for airborne transmission of IAV. Restoring IAV airborne transmission in antibiotic-treated ferrets by coinfection with confirmed a role for specific members of the bacterial respiratory community in promoting IAV transmission. These results implicate a role for the bacterial respiratory flora in promoting airborne transmission of IAV. Infection with influenza A virus (IAV), especially when complicated with a secondary bacterial infection, is a leading cause of global mortality and morbidity. Gaining a greater understanding of the transmission dynamics of IAV is important during seasonal IAV epidemics and in the event of a pandemic. Direct bacterium-virus interactions are a recently appreciated aspect of infectious disease biology. Direct interactions between IAV and specific bacterial species of the human upper respiratory tract were found to promote the stability and infectivity of IAV during desiccation stress. Viral environmental stability is an important aspect during transmission, suggesting a potential role for bacterial respiratory communities in IAV transmission. Airborne transmission of IAV was abrogated upon depletion of nasal bacterial flora with topical antibiotics. This defect could be functionally complemented by coinfection. These data suggest that bacterial coinfection may be an underappreciated aspect of IAV transmission dynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7470989 | PMC |
http://dx.doi.org/10.1128/mSystems.00762-20 | DOI Listing |
Infect Control Hosp Epidemiol
January 2025
Virology Department, AP-HP, Hôpital Saint-Louis, Paris, France.
Objective: Patients with chronic kidney disease suffer from immune dysfunction, increasing susceptibility to infections. The aim of the study was to investigate air contamination with respiratory viruses in a dialysis unit at a quaternary hospital using molecular detection techniques and to analyze airflow dynamics through computational fluid dynamics (CFD) simulations for a comprehensive assessment of air transmission risks.
Methods: We conducted dialysis unit air sampling using AerosolSense™ samplers.
Monaldi Arch Chest Dis
January 2025
Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, Himachal Pradesh.
Mycobacterium tuberculosis has been known to infect humans for eons. It is an airborne infectious disease transmitted through droplet nuclei of 1 to 5 µm in diameter. Historically, tuberculosis (TB) was considered a distinct condition characterized by TB infection and active TB disease.
View Article and Find Full Text PDFSci Rep
January 2025
Gunma University, 1-5-1 Tenjin-Cho, Kiryu, 376-8515, Japan.
With the emergence of COVID-19 variants and new viruses, it remains uncertain when the next pandemic will occur. A lockdown is considered the last resort to halt the spread of infection; however, it causes significant economic and social damage. Therefore, exploring less harmful alternatives during such scenarios is crucial.
View Article and Find Full Text PDFSci Adv
January 2025
Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
Pathogenic bioaerosols are critical for outbreaks of airborne disease; however, rapidly and accurately identifying pathogens directly from complex air environments remains highly challenging. We present an advanced method that combines open-set deep learning (OSDL) with single-cell Raman spectroscopy to identify pathogens in real-world air containing diverse unknown indigenous bacteria that cannot be fully included in training sets. To test and further enhance identification, we constructed the Raman datasets of aerosolized bacteria.
View Article and Find Full Text PDFToxics
December 2024
Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
Antibiotic resistance genes (ARGs) are emerging as significant environmental contaminants, posing potential health risks worldwide. Intensive livestock farming, particularly swine production, is a primary contributor to the escalation of ARG pollution. In this study, we employed metagenomic sequencing and quantitative polymerase chain reaction to analyze the composition of microorganisms and ARGs across four vectors in a typical swine fattening facility: dung, soil, airborne particulate matter (PM), and fodder.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!