AI Article Synopsis

  • Influenza A virus (IAV) interacts with respiratory bacteria, enhancing inflammation and disease severity, which increases morbidity and mortality rates.
  • Experimental studies show that the presence of certain bacteria in the respiratory tract helps maintain IAV's stability and infectivity, suggesting bacteria play a role in IAV transmission.
  • Depleting respiratory bacteria with antibiotics stopped IAV transmission in ferrets, but this was reversed by reinstalling specific bacterial species, highlighting the importance of bacterial communities in facilitating airborne IAV spread.

Article Abstract

Influenza A virus (IAV) is a major pathogen of the human respiratory tract, where the virus coexists and interacts with bacterial populations comprising the respiratory tract microbiome. Synergies between IAV and respiratory bacterial pathogens promote enhanced inflammation and disease burden that exacerbate morbidity and mortality. We demonstrate that direct interactions between IAV and encapsulated bacteria commonly found in the respiratory tract promote environmental stability and infectivity of IAV. Antibiotic-mediated depletion of the respiratory bacterial flora abrogated IAV transmission in ferret models, indicating that these virus-bacterium interactions are operative for airborne transmission of IAV. Restoring IAV airborne transmission in antibiotic-treated ferrets by coinfection with confirmed a role for specific members of the bacterial respiratory community in promoting IAV transmission. These results implicate a role for the bacterial respiratory flora in promoting airborne transmission of IAV. Infection with influenza A virus (IAV), especially when complicated with a secondary bacterial infection, is a leading cause of global mortality and morbidity. Gaining a greater understanding of the transmission dynamics of IAV is important during seasonal IAV epidemics and in the event of a pandemic. Direct bacterium-virus interactions are a recently appreciated aspect of infectious disease biology. Direct interactions between IAV and specific bacterial species of the human upper respiratory tract were found to promote the stability and infectivity of IAV during desiccation stress. Viral environmental stability is an important aspect during transmission, suggesting a potential role for bacterial respiratory communities in IAV transmission. Airborne transmission of IAV was abrogated upon depletion of nasal bacterial flora with topical antibiotics. This defect could be functionally complemented by coinfection. These data suggest that bacterial coinfection may be an underappreciated aspect of IAV transmission dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7470989PMC
http://dx.doi.org/10.1128/mSystems.00762-20DOI Listing

Publication Analysis

Top Keywords

airborne transmission
20
iav
17
respiratory tract
16
iav transmission
16
influenza virus
12
transmission iav
12
bacterial respiratory
12
transmission
11
respiratory
10
bacterial
10

Similar Publications

Objective: Patients with chronic kidney disease suffer from immune dysfunction, increasing susceptibility to infections. The aim of the study was to investigate air contamination with respiratory viruses in a dialysis unit at a quaternary hospital using molecular detection techniques and to analyze airflow dynamics through computational fluid dynamics (CFD) simulations for a comprehensive assessment of air transmission risks.

Methods: We conducted dialysis unit air sampling using AerosolSense™ samplers.

View Article and Find Full Text PDF

Incipient and subclinical tuberculosis: a narrative review.

Monaldi Arch Chest Dis

January 2025

Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, Himachal Pradesh.

Mycobacterium tuberculosis has been known to infect humans for eons. It is an airborne infectious disease transmitted through droplet nuclei of 1 to 5 µm in diameter. Historically, tuberculosis (TB) was considered a distinct condition characterized by TB infection and active TB disease.

View Article and Find Full Text PDF

With the emergence of COVID-19 variants and new viruses, it remains uncertain when the next pandemic will occur. A lockdown is considered the last resort to halt the spread of infection; however, it causes significant economic and social damage. Therefore, exploring less harmful alternatives during such scenarios is crucial.

View Article and Find Full Text PDF

Pathogenic bioaerosols are critical for outbreaks of airborne disease; however, rapidly and accurately identifying pathogens directly from complex air environments remains highly challenging. We present an advanced method that combines open-set deep learning (OSDL) with single-cell Raman spectroscopy to identify pathogens in real-world air containing diverse unknown indigenous bacteria that cannot be fully included in training sets. To test and further enhance identification, we constructed the Raman datasets of aerosolized bacteria.

View Article and Find Full Text PDF

Contamination Characteristics of Antibiotic Resistance Genes in Multi-Vector Environment in Typical Regional Fattening House.

Toxics

December 2024

Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.

Antibiotic resistance genes (ARGs) are emerging as significant environmental contaminants, posing potential health risks worldwide. Intensive livestock farming, particularly swine production, is a primary contributor to the escalation of ARG pollution. In this study, we employed metagenomic sequencing and quantitative polymerase chain reaction to analyze the composition of microorganisms and ARGs across four vectors in a typical swine fattening facility: dung, soil, airborne particulate matter (PM), and fodder.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!