Introduction: Neisseria lactamica is a commensal bacterium of the upper respiratory tract in humans and is closely related to Neisseria meningitidis. N. lactamica colonization may contribute to preventing N. meningitidis colonization and invasive meningococcal disease. However, the transference of antimicrobial resistance genes from N. lactamica to N. meningitidis has been reported.
Methods: In this study, we aimed to identify N. lactamica using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and performed multilocus sequence typing of seven N. lactamica strains isolated from Japanese children. We also analyzed the antimicrobial susceptibility of these strains and the mutations in their antimicrobial resistance genes (penA, gyrA, and parC).
Results: All the N. lactamica strains could be identified using MALDI-TOF MS. All strains were of different sequence types (STs), including five new STs. Five strains had intermediate susceptibility, two were resistant to ampicillin, and all had five out of the five known PBP2 mutations. Six strains were resistant to levofloxacin. Among the quinolone-resistant strains, three had GyrA mutations, and three had both ParC and GyrA mutations.
Conclusions: N. lactamica STs may vary in Japanese children, and penicillin- and quinolone-resistant strains may be prevalent. We should pay attention not only to the drug resistance of N. meningitidis but also to the drug susceptibility of N. lactamica whose drug-resistance genes may transfer to N. meningitidis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jiac.2020.08.011 | DOI Listing |
Genes (Basel)
January 2025
Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto 390-8621, Japan.
belongs to the unconventional myosin superfamily, and the myosin IIIa protein localizes on the tip of the stereocilia of vestibular and cochlear hair cells. Deficiencies in have been reported to cause the deformation of hair cells into abnormally long stereocilia with an increase in spacing. is a rare causative gene of autosomal recessive sensorineural hearing loss (DFNB30), with only 13 cases reported to date.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto 390-8621, Japan.
Background/objectives: The gene is responsible for autosomal recessive non-syndromic sensorineural hearing loss and is assigned as DFNB18B. To date, 44 causative variants have been reported to cause non-syndromic hearing loss. However, the detailed clinical features for -associated hearing loss remain unclear.
View Article and Find Full Text PDFChildren (Basel)
December 2024
School of Medicine, Kumamoto University, Kumamoto 860-8556, Japan.
Sleep disorders in children have a negative impact on mental and physical development, and a lack of sleep is one of the most important problems in infancy. At the age when naps are commonly accepted, the judgment of whether the amount of sleep is adequate has been based on the total amount of sleep per day. In other words, the idea is that even if the amount of sleep at night is insufficient, it is not considered insufficient if it is compensated for by taking a long nap or sleeping late on weekend mornings.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama City, Wakayama, Japan.
The accessory navicular (AN) is an accessory bone located on the posteromedial aspect of the navicular tuberosity that can cause pain following overuse or trauma, particularly during childhood. However, the detailed epidemiological characteristics of AN in children have not been well studied. This study aimed to clarify the prevalence of AN and painful AN among Japanese children by examining the characteristics according to sex and age.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Radiology and Nuclear Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, China.
Objective: To assess the changes of thalamic metabolites before and after surgery in patients with Cervical Spondylotic Myelopathy (CSM) using Hydrogen Proton Magnetic Resonance Spectroscopy (H-MRS) and to investigate its association with improvement in neurological function.
Methods: Forty-eight CSM patients who underwent cervical decompression surgery from December 2022 to June 2023 were included, and 33 healthy volunteers were recruited. All subjects underwent bilateral thalamic H-MRS scans before the surgical procedure, and subsequently again 6 months later.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!