After the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, immediate soil and vegetation sampling were conducted according to the action plan of nuclear emergency monitoring; however, analysing the monitoring dataset was difficult because the sampling protocols were not standardised. In this study, the sampling protocols applied just after the FDNPP accident were reviewed, and the monitoring data were analysed. The detailed protocols and results can provide a sound basis for guidelines of soil and vegetation sampling for nuclear emergency monitoring. The activity concentrations of Cs and I in weed samples measured immediately after the FDNPP accident were related to the air dose rate at 1 m. Consequently, vegetation sampling is recommended when the additional dose rate (above background) is higher than 0.1 μSv/h. To enhance the efficiency of a protective response in the case of a nuclear accident, predetermined sampling points for soil and vegetation sampling should be considered in the preparedness plan for nuclear emergencies. Furthermore, sampling and analytical measurement capacities (time, people, cost) during the early phase after nuclear emergencies need to be considered in the preparedness and action plan, and sampling and measurement exercises are highly recommended.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvrad.2020.106373 | DOI Listing |
PLoS One
January 2025
Instituto Tecnológico de Tlajomulco, Tecnológico Nacional de México, Tecnológico Nacional de México, Circuito Metropolitano Sur, Tlajomulco de Zúñiga, Jalisco, Mexico.
The community assembly of arbuscular mycorrhizal fungi (AMF) in the rhizosphere results from the recruitment and selection of different AMF species with different functional traits. The aim of this study was to analyze the relationship between biotic and abiotic factors and the AMF community assembly in the rhizosphere of four secondary vegetation (SV) plant species in a temperate forest. We selected four sites at two altitudes, and we marked five individuals per plant species at each site.
View Article and Find Full Text PDFEnviron Microbiome
January 2025
School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
Carbon monoxide (CO) oxidising microorganisms are present in volcanic deposits throughout succession, with levels of vegetation and soil influencing the communities present. Carboxydovores are a subset of CO oxidisers that use CO as an energy source, which raises questions about the physiological and metabolic features that make them more competitive in harsh volcanic ecosystems. To address these questions, samples were taken from volcanic strata formed by eruptions from Calbuco Volcano (Chile) in 2015 (tephra) and 1917 (soil).
View Article and Find Full Text PDFSci Data
January 2025
Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, 100091, China.
The vegetation index is a key satellite-based variable used to monitor global vegetation distribution and growth. However, existing vegetation index datasets face limitations in achieving both high spatial and temporal resolution, restricting their application potential. This study revised a machine learning spatiotemporal fusion model (InENVI) to produce a high-resolution NDVI dataset with 8-day temporal and 30 m spatial resolution, covering China from 2001 to 2020.
View Article and Find Full Text PDFSci Data
January 2025
Remote Sensing Centre for Earth System Research (RSC4Earth), Leipzig University, Leipzig, 04103, Germany.
With climate extremes' rising frequency and intensity, robust analytical tools are crucial to predict their impacts on terrestrial ecosystems. Machine learning techniques show promise but require well-structured, high-quality, and curated analysis-ready datasets. Earth observation datasets comprehensively monitor ecosystem dynamics and responses to climatic extremes, yet the data complexity can challenge the effectiveness of machine learning models.
View Article and Find Full Text PDFSci China Life Sci
January 2025
CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
Many alpine ecosystems are undergoing vegetation degradation because of global changes, which are affecting ecosystem functioning and biodiversity. The ecological consequences of alpine pioneer community degradation have been less studied than glacial retreat or meadow degradation in alpine ecosystems. We document the comprehensive responses of microbial community characteristics to degradation processes using field-based sampling, conduct soil microcosm experiments to simulate the effects of global change on microorganisms, and explore their relationships to ecosystem functioning across stages of alpine pioneer community degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!