This study describes the design and implementation of a novel high-performance piezoresistive accelerometer for the measurement of shock acceleration of up to 100 000 g. The structure of the accelerometer sensing chip was implemented with piezoresistive self-support beams. The piezoresistors were made in piezoresistive sensing micro-beams, which were independent of support beams, to weaken the correlation between measuring sensitivity and resonant frequency. In this way, the measuring sensitivity of the proposed novel piezoresistive accelerometer could be increased without sacrificing resonant frequency. The optimization of structural dimensions of the sensing chip was conducted through finite element method simulations. The sensing chip was fabricated employing bulk-micromachining technology with a silicon-on-insulator wafer. The fabricated accelerometer was encapsulated in stainless shell and evaluated using the Hopkinson bar system. Results demonstrated the proposed accelerometer with the measuring sensitivity of 0.54 µV/g/V and the resonant frequency of 445 kHz.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0008451 | DOI Listing |
J Agric Food Chem
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
In this study, we present an intelligent electromagnetic-actuated microfluidic chip integrated with a G-quadruplex DNAzyme-based biocatalysis platform for rapid and sensitive tetracycline (TC) detection. In this sensing system, TC significantly quenches fluorescent magnetic carbon dots (M-CDs) via the internal filtration effect and dynamic quenching (the excitation and emission wavelength at 350 and 440 nm, respectively). Then, the G-quadruplex on the M-CDs-Aptamer is exposed and bound with hemin to form hemin-G-quadruplex DNAzyme, catalyzing the conversion of 3,3',5,5'-tetramethylbenzidine to produce blue color.
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan, University Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China.
Ethylenediamine (EDA), as an important chemical raw material and fine chemical intermediate, has been widely applied in various industries. Real-time monitoring of EDA is highly desirable in daily life due to its potential threat to human health. Herein, we report a molecular probe named 4,4'-(9-carbazole-3,6-diyl)bis(1-(naphthalen-2-ylmethyl)pyridin-1-ium) iodide (p-N-DPC·I) with ratiometric luminescent and colorimetric dual-mode responses toward EDA, endowing a highly sensitive and selective detection method for its real-time monitoring.
View Article and Find Full Text PDFNat Commun
January 2025
School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.
Here, we design exotic interfaces within a flexible thermoelectric device, incorporating a polyimide substrate, Ti contact layer, Cu electrode, Ti barrier layer, and thermoelectric thin film. The device features 162 pairs of thin-film legs with high room-temperature performance, using p-BiSbTe and n-BiTeSe, with figure-of-merit values of 1.39 and 1.
View Article and Find Full Text PDFNanoscale Adv
January 2025
School of Electrical Engineering and Computer Science, University of Ottawa Ottawa Ontario K1N 6N5 Canada
Interference of surface plasmons has been widely utilized in optical metrology for applications such as high-precision sensing. In this paper, we introduce a surface plasmon interferometer with the potential to be arranged in arrays for parallel multiplexing applications. The interferometer features two grating couplers that excite surface plasmon polariton (SPP) waves traveling along a gold-air interface before converging at a gold nanoslit where they interfere.
View Article and Find Full Text PDFACS Mater Au
January 2025
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States.
The surge of flexible, biointegrated electronics has inspired continued research efforts in designing and developing chip-less and wireless devices as soft and mechanically compliant interfaces to the living systems. In recent years, innovations in materials, devices, and systems have been reported to address challenges surrounding this topic to empower their reliable operation for monitoring physiological signals. This perspective provides a brief overview of recent works reporting various chip-less electronics for sensing and actuation in diverse application scenarios.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!