Additive manufacturing (AM) is the term for a number of processes for joining materials to build physical components from a digital 3D model. AM has multiple advantages over other construction techniques, such as freeform, customization, and waste reduction. However, AM components have been evaluated by destructive and non-destructive testing and have shown mechanical issues, such as reduced resistance, anisotropy and voids. The build direction affects the mechanical properties of the built part, including voids of different characteristics. The aim of this work is an extended analysis of void shape by means of X-ray computed tomography (CT) applied to fused deposition modeling (FDM) samples. Furthermore, a relation between the tensile mechanical properties and digital void measurements is established. The results of this work demonstrate that void characteristics such as quantity, size, sphericity and compactness show no obvious variations between the samples. However, the angle between the main void axis and the mechanical load axis α shows a relation for FDM components: when its mean value μ(α) is around 80 (degrees) the yield strength and Young's modulus are reduced. These results lead to the formulation of a novel criterion that predicts the mechanical behavior of AM components.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504175 | PMC |
http://dx.doi.org/10.3390/ma13173831 | DOI Listing |
Nano Lett
January 2025
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China.
Aqueous zinc metal batteries (AZMBs) are an energy storage system that is expected to replace traditional lithium batteries. However, the practical application of AZMBs is hampered by some inherent drawbacks. Herein, an amino acid additive with a screening property is introduced.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.
ConspectusLight-driven polymerizations and their application in 3D printing have revolutionized manufacturing across diverse sectors, from healthcare to fine arts. Despite the popularized notion that with 3D printing "imagination is the only limit", we and others in the scientific community have identified fundamental hurdles that restrict our capabilities in this space. Herein, we describe the group's efforts in developing photochemical systems that respond to nontraditional colors of light to elicit the rapid, spatiotemporally controlled formation of plastics.
View Article and Find Full Text PDFJ Esthet Restor Dent
January 2025
Graduate Prosthodontics, Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, Washington, USA.
Clinical Considerations: Conventional facebow records are used to transfer the maxillary cast into the analog articulator. Different reference planes have been described, including the true horizontal or gravity reference plane. A conventional facebow (Kois Dentofacial Analyzer; Panadent) allows the recording of the gravity plane for transferring the maxillary cast into the analog semi-adjustable articulator.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
Dental Materials Unit, Center for Dental Medicine, Clinic for Masticatory Disorders and Dental Biomaterials, University of Zurich, Zurich, Switzerland.
The purpose of this study was to evaluate the characteristics of the ceramic bonding to cobalt-chromium (Co-Cr) alloys fabricated by casting, milling, and additive manufacturing, compared with zirconia and nickel-chromium. One hundred specimens (N = 100), prepared with the dimensions of 25 × 3 × 0.5 mm, were assigned to five groups (n = 20): presintered milled Co-Cr (Group M), additively manufactured Co-Cr (Group SLM), cast Co-Cr (Group C), presintered zirconia (Group Zi), and cast Ni-Cr (Group Ni).
View Article and Find Full Text PDFMater Futur
March 2025
Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
Magnesium (Mg) and its alloys are revolutionizing the field of interventional surgeries in the medical industry. Their high biocompatibility, biodegradability, and a similar elastic modulus to natural bone make porous Mg-based structures potential candidates for orthopedic implants and tissue engineering scaffolding. However, fabricating and machining porous Mg-based structures is challenging due to their complexity and difficulties in achieving uniform or gradient porosity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!