Cabbage ( var. ) is an economically important crop in the family Brassicaceae. Black rot disease is a top ranked cabbage disease, which is caused by pv. () and may reduce 50% crop loss. Therefore, we need a clear understanding of black rot disease resistance for sustainable disease management. The secondary metabolites, like Glucosinolate (GSL) presents in species, which plays a potential role in the defense mechanism against pathogens. However, there is little known about GSL-regulated resistance mechanisms and GSL biosynthesis and the breakdown related gene expression after black rot disease infection in cabbage. In this study, relative expression of 43 biosynthetic and breakdown related GSLs were estimated in the black rot resistant and susceptible cabbage lines after inoculation. Ten different types of GSL from both aliphatic and indolic groups were identified in the contrasting cabbage lines by HPLC analysis, which included six aliphatic and four indolic compounds. In the resistant line, nine genes (, , , , , , , and ) showed consistent expression patterns. Pearson's correlation coefficient showed positive and significant association between aliphatic GSL compounds and expression values of and genes as well as between indolic GSL compounds and the expression of , , , and genes. This study helps in understanding the role of GSL biosynthesis and breakdown related genes for resistance against black rot pathogen in cabbage, which could be further confirmed through functional characterization either by overexpression or knock-out mutation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7569847 | PMC |
http://dx.doi.org/10.3390/plants9091121 | DOI Listing |
Int J Mol Sci
January 2025
Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
Rapeseed ( L.) is an important crop for healthy edible oil and stockfeed worldwide. However, its growth and yield are severely hampered by black rot, a destructive disease caused by pv.
View Article and Find Full Text PDFItal J Food Saf
November 2024
Plant Pathology and Postharvest Quality Laboratory, Regional Center for Agronomical Research of Kenitra, Morocco.
Biotic stress significantly challenges the global citrus industry. Major post-harvest issues include diseases caused by , and . The negative impact of chemical fungicides on the environment and health necessitates eco-friendly alternatives.
View Article and Find Full Text PDFMicroorganisms
November 2024
A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia.
is a bacterial phytopathogen that causes soft and black rot and actively spreads worldwide. Our study is the first development of immunoassays for detecting . We immunized rabbits and obtained serum with an extremely high titer (1:10).
View Article and Find Full Text PDFPathogens
December 2024
Department of Biotechnology and Plant Breeding, Institute of Soil Science and Plant Cultivation-State Research Institute, 24-100 Puławy, Poland.
Black root rot is a dangerous disease affecting many crops. It is caused by pathogens formerly known as and then reclassified as two cryptic species, and . The aim of this study was to perform species identification, morphological characterization, and pathogenicity tests for fungal isolates obtained from tobacco roots with black root rot symptoms in Poland.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture, Xuzhou 221131, China.
: Sweetpotato black rot, caused by , is a severe fungal disease in sweetpotato production. Biological control strategies represent a promising, environmentally sustainable approach to managing this disease. This study investigates the biocontrol potential of SFB-1 against .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!