Mapping QTL Associated with Resistance to Avian Oncogenic Marek's Disease Virus (MDV) Reveals Major Candidate Genes and Variants.

Genes (Basel)

The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.

Published: August 2020

Marek's disease (MD) represents a significant global economic and animal welfare issue. Marek's disease virus (MDV) is a highly contagious oncogenic and highly immune-suppressive α-herpes virus, which infects chickens, causing neurological effects and tumour formation. Though partially controlled by vaccination, MD continues to have a profound impact on animal health and on the poultry industry. Genetic selection provides an alternative and complementary method to vaccination. However, even after years of study, the genetic mechanisms underlying resistance to MDV remain poorly understood. The Major Histocompatability Complex (MHC) is known to play a role in disease resistance, along with a handful of other non-MHC genes. In this study, one of the largest to date, we used a multi-facetted approach to identify QTL regions (QTLR) influencing resistance to MDV, including an F population from a full-sib advanced intercross line (FSIL) between two elite commercial layer lines differing in resistance to MDV, RNA-seq information from virus challenged chicks, and genome wide association study (GWAS) from multiple commercial lines. Candidate genomic elements residing in the QTLR were further tested for association with offspring mortality in the face of MDV challenge in eight pure lines of elite egg-layer birds. Thirty-eight QTLR were found on 19 chicken chromosomes. Candidate genes, miRNAs, lncRNAs and potentially functional mutations were identified in these regions. Association tests were carried out in 26 of the QTLR, using eight pure lines of elite egg-layer birds. Numerous candidate genomic elements were strongly associated with MD resistance. Genomic regions significantly associated with resistance to MDV were mapped and candidate genes identified. Various QTLR elements were shown to have a strong genetic association with resistance. These results provide a large number of significant targets for mitigating the effects of MDV infection on both poultry health and the economy, whether by means of selective breeding, improved vaccine design, or gene-editing technologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564597PMC
http://dx.doi.org/10.3390/genes11091019DOI Listing

Publication Analysis

Top Keywords

resistance mdv
16
associated resistance
12
marek's disease
12
candidate genes
12
resistance
8
disease virus
8
mdv
8
virus mdv
8
candidate genomic
8
genomic elements
8

Similar Publications

Marek's Disease (MD), caused by Marek's disease virus (MDV), is a highly contagious lymphoproliferative disease in poultry. Despite the fact that MD has been effectively controlled by vaccines, the virulence of field isolates of MDV has continued to evolve, becoming more virulent under the immune pressure of vaccines. Our previous research has confirmed that the recombinant rMDV strain with REV-LTR insertion can be used as a live attenuated vaccine candidate.

View Article and Find Full Text PDF

The interest for in ovo feeding has grown in the last decades mainly concerning probiotics, live microorganisms that can actively interact with the embryo. The aim of this study was to evaluate the effects of a multi-strain probiotic diluted in Marek's disease vaccine (MDV) on zootechnical performances, intestinal morphology and spp. infection.

View Article and Find Full Text PDF

Battery cells based on different silicon/carbon (Si/C) loadings were assembled in this work. Their battery performance, in particular their capacity and cycling stability, was evaluated. The battery was assembled in a way that a pure Li metal counter electrode, LiPF liquid electrolyte and pole piece with Si/C coatings were employed.

View Article and Find Full Text PDF

Background: Although anaplastic lymphoma kinase inhibitors (ALKis) are the effective initial treatment for patients with anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC), most patients experience resistance to ALKis, leading to the need for alternative therapies. Immune checkpoint inhibitors (ICIs) are a standard NSCLC treatment. On the other hand, their efficacy remains unclear for ALK-positive NSCLC.

View Article and Find Full Text PDF
Article Synopsis
  • Marek's disease virus (MDV) causes fatal lymphomas in chickens by integrating its genome into the telomeres of host chromosomes, a process essential for tumor development.
  • The SB-1 vaccine, used widely to combat MDV, also contains elements that aid in this integration, highlighting the virus's unique mechanisms.
  • Research shows that removing these elements from SB-1 does not affect virus replication but significantly reduces its ability to integrate and maintain its genome in infected T cells, leading to poor vaccine effectiveness.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!