A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integrated Computational Material Design for PMC Manufacturing with Trapped Rubber. | LitMetric

Integrated Computational Material Design for PMC Manufacturing with Trapped Rubber.

Materials (Basel)

Division of Engineering Materials, Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.

Published: August 2020

As the use of continuous fiber polymer matrix composites expands into new fields, there is a growing need for more sustainable manufacturing processes. An integrated computational material design framework has been developed, which enables the design of tailored manufacturing systems for polymer matrix composite materials as a sustainable alternative to achieving high-quality components in high-rate production. Trapped rubber processing achieves high pressures during polymer matrix composite processing, utilizing the thermally induced volume change of a nearly incompressible material inside a closed cavity mold. In this interdisciplinary study, the structural analysis, material science and manufacturing engineering perspectives are all combined to determine the mold mechanics, and the manufacturing process in a cohesive and iterative design loop. This study performs the coupled thermo-mechanical analysis required to simulate the transients involved in composite manufacturing and the results are compared with a previously developed test method. The internal surface pressure and temperatures are computed, compared with the experimental results, and the resulting design process is simulated. Overall, this approach maintains high-quality consolidation during curing while allowing for the possibility for custom distributions of pressures and temperatures. This can lead to more sustainable manufacturing by reducing energy consumption and improving throughput.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7503717PMC
http://dx.doi.org/10.3390/ma13173825DOI Listing

Publication Analysis

Top Keywords

polymer matrix
12
integrated computational
8
computational material
8
material design
8
trapped rubber
8
sustainable manufacturing
8
matrix composite
8
manufacturing
7
design
5
material
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!