Detection of Micro-Cracks in Metals Using Modulation of PZT-Induced Lamb Waves.

Materials (Basel)

Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.

Published: August 2020

The ultrasonic modulation technique, developed by inspecting the nonlinearity from the interactions of crack surfaces, has been considered very effective in detecting fatigue cracks in the early stage of the crack development due to its high sensitivity. The wave modulation is the frequency shift of a wave passing through a crack and does not occur in intact specimens. Various parameters affect the modulation of the wave, but quantitative analysis for each variable has not been comprehensively conducted due to the complicated interaction of irregular crack surfaces. In this study, specimens with a constant crack width are manufactured, and the effects of various excitation parameters on modulated wave generation are analyzed. Based on the analysis, an effective crack detection algorithm is proposed and verified by applying the algorithm to fatigue cracks. For the quantitative analysis, tests are repeatedly conducted by varying parameters. As a result, the excitation intensity shows a strong linear relationship with the amount of modulated waves, and the increase of modulated wave is expected as crack length increases. However, the change in the dynamic characteristics of the specimen with the crack length is more dominant in the results. The excitation frequency is the most dominant variable to generate the modulated waves, but a direct correlation is not observed as it is difficult to measure the interaction of crack surfaces. A numerical analysis technique is developed to accurately simulate the movement and interaction of the crack surface. The crack detection algorithm, improved by using the observations from the quantitative analyses, can distinguish the occurrence of modulated waves from the ambient noises, and the state of the specimens is determined by using two nonlinear indexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504035PMC
http://dx.doi.org/10.3390/ma13173823DOI Listing

Publication Analysis

Top Keywords

crack surfaces
12
modulated waves
12
crack
11
technique developed
8
fatigue cracks
8
quantitative analysis
8
modulated wave
8
crack detection
8
detection algorithm
8
crack length
8

Similar Publications

Boehmite nanoparticles and NaY nanozeolite were synthesized by co-precipitation and hydrothermal methods, respectively, and characterized by XRD, FT-IR, TG-DTA, BET, and SEM techniques. XRD and BET analyses demonstrated the formation of boehmite nanoparticles with a surface area of 350 m/g and high crystallinity NaY nanozeolite with a surface area of 957 m/g. In order to evaluate the effect of the content of the mesoporous boehmite nanoparticles on the catalytic performance of the Residue Fluid Catalytic Cracking (RFCC) catalyst, alumina active matrix-based and silica inactive matrix-based catalysts were prepared.

View Article and Find Full Text PDF

P2-NaMnNiCoO stabilized by optimal active facets for sodium-ion batteries.

J Colloid Interface Sci

January 2025

MOE Key Laboratory for UV Light-Emitting Materials and Technology, Department of Physics, Northeast Normal University, Changchun, Jilin 130024, PR China; Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China. Electronic address:

Considering factors such as crustal reserves, atomic mass, redox potential and energy density, sodium-ion batteries (SIBs) are regarded as the most promising alternative to lithium-ion batteries (LIBs). Transition metal-based layered oxides, especially typical NaMnO, stand out among cathode materials due to their low cost and high energy density. However, NaMnO cathodes face several challenges, including Jahn-Teller distortion, manganese dissolution, structural collapse, irreversible phase transition and significant capacity loss.

View Article and Find Full Text PDF

Physics-Based Synthetic Data Model for Automated Segmentation in Catalysis Microscopy.

Microsc Microanal

January 2025

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin 14195, Germany.

In catalysis research, the amount of microscopy data acquired when imaging dynamic processes is often too much for nonautomated quantitative analysis. Developing machine learned segmentation models is challenged by the requirement of high-quality annotated training data. We thus substitute expert-annotated data with a physics-based sequential synthetic data model.

View Article and Find Full Text PDF

Leeches are widely used as model organisms in scientific studies and medical treatments. Medical leeches are hematophagous parasites that usually feed on the blood of their hosts. Some leeches show deformities, usually after feeding.

View Article and Find Full Text PDF

The directivity of the quasi-static component (QSC) is quantitatively investigated for evaluating the orientation of a micro-crack buried in a thin solid plate using the numerical simulation method. Based on the bilinear stress-strain constitutive model, a three-dimensional (3D) finite element model (FEM) is built for investigating the nonlinear interaction between primary Lamb waves and the micro-crack. When the primary Lamb waves at A0 mode impinge on the micro-crack, under the modulation of the contact acoustic nonlinearity (CAN), the micro-crack itself will induce QSC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!