The Characteristic of Virulence, Biofilm and Antibiotic Resistance of .

Int J Environ Res Public Health

Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.

Published: August 2020

is an important gram-negative opportunistic pathogen that causes a variety of infectious diseases, including urinary tract infections, bacteremia, pneumonia, and liver abscesses. With the emergence of multidrug-resistant (MDR) and () strains, the rapid spread of these clinical strains in geography is particularly worrying. However, the detailed mechanisms of virulence and antibiotic resistance in are still not very clear. Therefore, studying and elucidating the pathogenic mechanisms and drug resistance mechanism of infection are important parts of current medical research. In this paper, we systematically summarized the virulence, biofilm, and antibiotic tolerance mechanisms of , and explored the application of whole genome sequencing and global proteomics, which will provide new clues for clinical treatment of .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7503635PMC
http://dx.doi.org/10.3390/ijerph17176278DOI Listing

Publication Analysis

Top Keywords

virulence biofilm
8
biofilm antibiotic
8
antibiotic resistance
8
characteristic virulence
4
resistance gram-negative
4
gram-negative opportunistic
4
opportunistic pathogen
4
pathogen variety
4
variety infectious
4
infectious diseases
4

Similar Publications

Bacterial plant diseases, worsened by biofilm-mediated resistance, are increasingly threatening global food security. Numerous attempts have been made to develop agrochemicals that inhibit biofilms, however, their ineffective foliar deposition and difficulty in removing mature biofilms remain major challenges. Herein, multifunctional three-component supramolecular nano-biscuits (NI6R@CB[7]@β-CD) are successfully engineered via ordered self-assembly between two macrocycles [cucurbit[7]uril (CB[7]), β-cyclodextrin (β-CD)] and (R)-2-naphthol-based bis-imidazolium bromide salt (NI6R).

View Article and Find Full Text PDF

PMT4 Is Involved in -Glycosylation, Cell Wall Organization, Membrane Integrity, and Virulence.

J Fungi (Basel)

January 2025

Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, La Serena 1700000, Chile.

Proteins found within the fungal cell wall usually contain both - and -oligosaccharides. -glycosylation is the process where these oligosaccharides (hereinafter: glycans) are attached to asparagine residues, while in -glycosylation the glycans are covalently bound to serine or threonine residues. The family is grouped into , , and subfamilies.

View Article and Find Full Text PDF

The Effect of Temperature over the Growth and Biofilm Formation of the Thermotolerant .

J Fungi (Basel)

January 2025

Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala s/n Col. Casco de Santo Tomás, Alcaldia Miguel Hidalgo, Mexico City C.P. 11340, Mexico.

is a medically relevant fungus, particularly in tropical regions. Although its aflatoxin production and thermotolerance are well documented, its biofilm-forming ability has received less attention, despite being a key factor in the virulence of as an opportunistic pathogen, which can significantly impact therapeutic outcomes. To investigate the influence of temperature on the growth and biofilm formation of an isolate, we compared it on solid media with the reference strain ATCC 22546 and documented morphological changes during conidial germination.

View Article and Find Full Text PDF

(PA), as a common pathogen of nosocomial infections, has been experiencing an increasing rate of drug resistance with the widespread use and abuse of antimicrobial drugs. High-drug-resistance and high-virulence phenotypes are two distinctive features of the strong pathogenicity of multi-drug-resistant PA. Exploring the characterization of virulence factor expression and its relationship with the multi-drug resistance phenotype is essential to reduce the further development of resistance as well as a high standard of infection prevention and control.

View Article and Find Full Text PDF

for targeting MRSA virulence: and studies.

Heliyon

January 2025

Department of Biological Sciences, Faculty of Science, Beirut Arab University, Tripoli, 1300, Lebanon.

The present study reports the characterization of the phytochemical content and the antibacterial activity of ethanolic extracts from the leaves (LE) and stems (SE) of against Methicillin resistant (MRSA. Important functional groups were determined by analyzing the FTIR spectra of LE and SE. The phytochemical profiles were analyzed by GC-MS, and these characterized the chemicals according to retention periods and peak regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!