Cutin from Dunal and Jacq. as a Potential Raw Material for Biopolymers.

Polymers (Basel)

Instituto Politécnico Nacional-CNMN, Unidad Profesional Adolfo López Mateos, Col. Zacatenco, México City CDMX CP 07738, Mexico.

Published: August 2020

Plant cuticles have attracted attention because they can be used to produce hydrophobic films as models for novel biopolymers. Usually, cuticles are obtained from agroresidual waste. To find new renewable natural sources to design green and commercially available bioplastics, fruits of and were analyzed. These fruits are not used for human or animal consumption, mainly because the fruit is composed of seeds. Fruit peels were object of enzymatic and chemical methods to get thick cutins in good yields (approximately 77% from dry weight), and they were studied by solid-state resonance techniques (CPMAS C NMR), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and direct injection electrospray ionization mass spectrometry (DIESI-MS) analytical methods. The main component of cutin is 10,16-dihydroxypalmitic acid (10,16-DHPA, 69.84%), while cutin besides of 10,16-DHPA (44.02%); another two C18 monomers: 9,10,18-trihydroxy-octadecanoic acid (24.03%) and 18-hydroxy-9S,10R-epoxy-octadecanoic acid (9.36%) are present. The hydrolyzed cutins were used to produce films demonstrating that both cutins could be a potential raw material for different biopolymers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7565047PMC
http://dx.doi.org/10.3390/polym12091945DOI Listing

Publication Analysis

Top Keywords

potential raw
8
raw material
8
material biopolymers
8
cutin dunal
4
dunal jacq
4
jacq potential
4
biopolymers plant
4
plant cuticles
4
cuticles attracted
4
attracted attention
4

Similar Publications

Pseudomonas spp. are a psychrotrophic species associated with milk spoilage caused by its enzymatic activities. The aim of this study was to identify Pseudomonas spp.

View Article and Find Full Text PDF

Background: Acute lung injury (ALI) significantly impacts the survival rates in intensive care units (ICU). Releasing a lot of pro-inflammatory mediators during the progression of the disease is a core feature of ALI, which may lead to uncontrolled inflammation and further damages the tissues and organs of patients. This study explores the potential therapeutic mechanisms of Dexmedetomidine (Dex) in ALI.

View Article and Find Full Text PDF

Ginsenoside Ro improves Salmonella Typhimurium-induced colitis through inhibition of the virulence factors SopB and SopE2 via the RAC1/CDC42/ARP2/3 pathway.

FASEB J

December 2024

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.

Salmonella enterica serovar Typhimurium (S. Typhimurium) poses a serious threat to human and animal health, and there is an urgent need to develop new therapeutic agents. In our in vivo study, ginsenoside Ro (Ro) reduced the mortality rate of S.

View Article and Find Full Text PDF

Phytochrome-interacting factors (PIFs) belong to a subfamily of the bHLH transcription factor family and play a pivotal role in plant light signal transduction, hormone signal pathways, and the modulation of plant responses to various abiotic stresses. The soybean (Glycine max) is a significant food crop, providing essential oil and nutrients. Additionally, it is a vital industrial raw material and a lucrative cash crop.

View Article and Find Full Text PDF

AI-driven identification of a novel malate structure from recycled lithium-ion batteries.

Environ Res

December 2024

INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123, Brescia, Italy. Electronic address:

The integration of Artificial Intelligence (AI) into the discovery of new materials offers significant potential for advancing sustainable technologies. This paper presents a novel approach leveraging AI-driven methodologies to identify a new malate structure derived from the treatment of spent lithium-ion batteries. By analysing bibliographic data and incorporating domain-specific knowledge, AI facilitated the identification and structure refinement of a new malate complex containing different metals (Ni, Mn, Co, and Cu).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!