Air pollution exposure and bladder, kidney and urinary tract cancer risk: A systematic review.

Environ Pollut

University Rennes 1, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France. Electronic address:

Published: December 2020

Background: Exposure to outdoor air pollution has been linked to lung cancer, and suspicion arose regarding bladder, kidney, and urinary tract cancer (urological cancers). However, most of evidence comes from occupational studies; therefore, little is known about the effect of exposure to air pollution on the risk of urological cancers in the general population.

Method: We systematically searched Medline, Scopus, and Web of Science for articles investigating the associations between long-term exposure to air pollution and the risk of urological cancer (incidence or mortality). We included articles using a specific air pollutant (PM, PM, …) or proxies (traffic, proximity index …). We assessed each study's quality with the Newcastle-Ottawa scale and rated the quality of the body of evidence for each pollutant-outcome with the GRADE approach. The different study methodologies regarding exposure or outcome prevented us to perform a meta-analysis.

Results: twenty articles (four case-control, nine cohort, and seven ecologic) met our inclusion criteria and were included in this review: eighteen reported bladder, six kidney, and two urinary tract. Modeling air pollutants was the most common exposure assessment method. Most of the included studies reported positive associations between air pollution and urological cancer risk. However, only a few reached statistical significance (e.g. for bladder cancer mortality, adjusted odds-ratio of 1.13 (1.03-1.23) for an increase of 4.4 μg.m-3 of PM). Most studies inadequately addressed confounding, and cohort studies had an insufficient follow-up.

Discussion: Overall, studies suggested positive (even though mostly non-significant) associations between air pollution exposure and bladder cancer mortality and kidney cancer incidence. We need more studies with better confounding control and longer follow-ups.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.115328DOI Listing

Publication Analysis

Top Keywords

air pollution
24
bladder kidney
12
kidney urinary
12
urinary tract
12
air
8
pollution exposure
8
exposure bladder
8
cancer
8
tract cancer
8
cancer risk
8

Similar Publications

Air pollution and breast cancer risk: a Mendelian randomization study.

Int J Environ Health Res

January 2025

Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.

Previous research yields inconsistent findings on the association between air pollution and breast cancer risk, with no definitive causal relationship established. To address this, we conducted a two-sample Mendelian randomization study on data from the IEU open GWAS databases and the Breast Cancer Association Consortium to explore the potential link between air pollution (including PM, PM absorbance, PM, PM, NO, and NO) and breast cancer risk. We found that PM (odds ratio (OR) = 1.

View Article and Find Full Text PDF

Application of active biomonitoring technique for the assessment of air pollution by potentially toxic elements in urban areas in the Kemerovo Region, Russia.

Environ Monit Assess

January 2025

Municipal Budgetary Educational Institution "Lyceum of the City of Yurga", St. Kirova, 7, Yurga, Kemerovo Region, 652055, Russia.

In Kemerovo Region (Kuzbass, Southwest Siberia), there is the largest coal basin in Russia and one of the largest in the world. Active moss biomonitoring was applied to assess the impact of potentially toxic elements on air pollution in five urban areas of the region. In each of the chosen urban regions, the moss bags were exposed in November and December of 2022 at locations with varying degrees of anthropogenic pressure.

View Article and Find Full Text PDF

This research was carried out to assess the concentrations of carbon monoxide (CO) and formaldehyde (HCHO) in Edo State, Southern Nigeria, using remote sensing data. A secondary data collection method was used for the assessment, and the levels of CO and HCHO were extracted annually from Google Earth Engine using information from Sentinel-5-P satellite data (COPERNISCUS/S5P/NRTI/L3_) and processed using ArcMap, Google Earth Engine, and Microsoft Excel to determine the levels of CO and HCHO in the study area from 2018 to 2023. The geometry of the study location is highlighted, saved and run, and a raster imagery file of the study area is generated after the task has been completed with a 'projection and extent' in the Geographic Tagged Image File Format (.

View Article and Find Full Text PDF

The agricultural productivity and world-wide food security is affected by different phytopathogens, in which Fusarium is more destructive affecting more than 150 crops, now got resistance against many fungicides that possess harmful effects on environment such as soil health, air pollution, and human health. Fusarium fungicide resistance is an increasing concern in agricultural and environmental contexts, requiring a thorough understanding of its causes, implications, and management approaches. The mechanisms of fungicide resistance in Fusarium spp.

View Article and Find Full Text PDF

What Impact Does Net Zero Action on Road Transport and Building Heating Have on Exposure to UK Air Pollution?

Environ Sci Technol

January 2025

Environmental Research Group, School of Public Health, Imperial College London, Sir Michael Uren Biomedical Engineering Hub, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom.

This study explores the cobenefits of reduced nitrogen dioxide (NO), ozone (O), and particulate matter (PM), through net zero (NZ) climate policy in the UK. Two alternative NZ scenarios, the balanced net zero (BNZP) and widespread innovation (WI) pathways, from the UK Climate Change Committee's Sixth Carbon Budget, were examined using a chemical transport model (CTM). Under the UK existing policy, Business as Usual (BAU), reductions in NO and PM were predicted by 2030 due to new vehicle technologies but plateau by 2040.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!