In order to promote the development of the biogas industry, solutions are needed to improve concrete structures durability in this environment. This multiphysics study aims to analyse the multiphases interactions between the liquid phase of an anaerobic digestion system and cementitious matrices, focusing on (i) the impacts of the binder nature on the anaerobic digestion process at local scale, and (ii) the deterioration mechanisms of the materials. Cementitious pastes made of slag cement (CEM III), innovative metakaolin-based alkali-activated material (MKAA), with compositions presumed to resist chemically aggressive media, and a reference binder, ordinary Portland cement (CEM I), were tested by immersion in inoculated cattle manure in bioreactors for a long period of five digestion cycles. For the first time it was shown that the digestion process was disturbed in the short term by the presence of the materials that increased the pH of the liquid phase and slowed the acids consumption, with much more impact of the MKAA. However, the final total production of biogas was similar in all bioreactors. Material analyses showed that, in this moderately aggressive medium, the biodeterioration of the CEM I and CEM III pastes mainly led to cement matrix leaching (decalcification) and carbonation. MKAA showed a good behaviour with very low degraded depths. In addition, the material was found to have interesting ammonium adsorption properties in the chemical conditions (notably the pH range) of anaerobic digestion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.141518DOI Listing

Publication Analysis

Top Keywords

anaerobic digestion
16
slag cement
8
liquid phase
8
digestion process
8
cement cem
8
cem iii
8
digestion
6
blast-furnace slag
4
cement
4
cement metakaolin
4

Similar Publications

Background: The rumen fluke, Calicophoron daubneyi, is the major paramphistome species infecting ruminants within Europe. Adult flukes reside within the rumen where they are in direct contact with a unique collection of microorganisms. Here, we report a 1.

View Article and Find Full Text PDF

One-Pot lignin bioconversion to polyhydroxyalkanoates based on hierarchical utilization of heterogeneous compounds.

Bioresour Technol

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, S117585, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), S138602, Singapore. Electronic address:

Pseudomonas putida degraded 35 % of compounds in alkali-pretreated lignin liquor under nitrogen-replete conditions but with low polyhydroxyalkanoates (PHA) production, while limiting nitrogen supplement improved PHA content (PHA/dry cell weight) to 43 % at the expense of decreased lignin degradation of 22 %. Increase of initial cell biomass (0.1-1.

View Article and Find Full Text PDF

Excess biological sludge processing and disposal have a significant impact on the energy balance and economics of wastewater treatment operations, and on receiving environments. Anaerobic digestion is probably the most widespread in-plant sludge processing method globally, since it stabilizes and converts biosolids organic matter into biogas, allowing partial recovery of their embedded chemical energy. A considerable number of studies concerning applicable techniques to improve biogas production, both in quantity and quality, include pre-treatment strategies to promote biosolids disintegration aimed at the release and solubilisation of intracellular energy compounds, inorganic/biological amendments aimed at improving process performance, and sludge thermal pre-treatment.

View Article and Find Full Text PDF

Microalgae-based membrane bioreactor for wastewater treatment, biogas production, and sustainable energy: a review.

Environ Res

January 2025

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia; Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia.

Managing wastewater and using renewable energy sources are challenges in achieving Sustainable Development Goals. This study provides an overview of the factors influencing the performance of algae-based membrane bioreactors (AMBRs) for contaminant removal from wastewater and biogas. This review highlights that the performance of AMBRs in removing total phosphorus (TP) and nitrogen (N) from wastewater can reach up to 93% and 97%, depending on parameters such as pH, hydraulic retention time (HRT), and algae concentration.

View Article and Find Full Text PDF

Shotgun and proximity-ligation metagenomic sequencing were used to generate thousands of metagenome assembled genomes (MAGs) from the untreated wastewater, activated sludge bioreactors, and anaerobic digesters from two full-scale municipal wastewater treatment facilities. Analysis of the antibiotic resistance genes (ARGs) in the pool of contigs from the shotgun metagenomic sequences revealed significantly different relative abundances and types of ARGs in the untreated wastewaster compared to the activated sludge bioreactors or the anaerobic digesters (p < 0.05).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!