The functional role of long non-coding RNAs and their underlying mechanisms in drug resistance of non-small cell lung cancer.

Life Sci

Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China; Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China. Electronic address:

Published: November 2020

Background: Non-small cell lung cancer (NSCLC) is the most commonly diagnosed solid cancer and the main origin of cancer-related deaths worldwide. Current strategies to treat advanced NSCLC are based on a combined approach of targeted therapy and chemotherapy. But most patients will eventually get resistance to either chemotherapy or targeted therapy, leading to the poor prognosis. The mechanism of NSCLC drug resistance is inconclusive and is affected by multiple factors. Long non-coding RNAs (LncRNAs) are non-coding RNAs (ncRNAs) longer than 200 nucleotides. Recent studies show that lncRNAs are involved in many cellular physiological activities, including drug resistance of NSCLC. It is of great clinical significance to understand the specific mechanisms and the role of lncRNAs in it.

Conclusions: Herein, we focus on the functional roles and the underlying mechanisms of lncRNAs in acquired drug resistance of NSCLC. LncRNAs have potential values as novel prognostic biomarkers and even therapeutic targets in the clinical management of NSCLC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2020.118362DOI Listing

Publication Analysis

Top Keywords

drug resistance
16
non-coding rnas
12
long non-coding
8
underlying mechanisms
8
non-small cell
8
cell lung
8
lung cancer
8
targeted therapy
8
resistance nsclc
8
nsclc
6

Similar Publications

In women globally, breast cancer ranks as the second most frequent cause of cancer-related deaths, making up about 25% of female cancer cases, which is pretty standard in affluent countries. Breast cancer is divided into subtypes based on aggressive, genetic and stage. The precise cause of the problem is still unknown.

View Article and Find Full Text PDF

Dysregulated lipid metabolism within the tumor microenvironment (TME) is a critical hallmark of cancer progression, with lipids serving as a major energy source for tumor cells. Beyond their role in cell membrane synthesis, lipids also provide essential substrates for biomolecule production and activate signaling pathways that regulate various cellular processes. Aberrant lipid metabolism impacts not only function but also alters the behavior of immune and stromal cells within the TME.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) has fundamentally transformed cancer treat-ment by unlocking the potency of CD8+ T cells by targeting the suppression of the CTLA-4 and PD-1/PD-L1 pathways. Nevertheless, ICBs are associated with the risk of severe side effects and resistance in certain patients, driving the search for novel and safer immune check-point modulators. Monoamine Oxidase A (MAO-A) plays an unexpected role in the field of cancer.

View Article and Find Full Text PDF

Causal associations between circulating protein ratios and drug resistance in papillary thyroid cancer: a Mendelian randomization study.

Discov Oncol

January 2025

Department of Clinical Laboratory, Affiliated Hospital of Guangdong Medical University, No. 57 South Renmin Avenue, Xiashan District, Zhanjiang, 524001, People's Republic of China.

Objective: Circulating protein level ratios (CPLRs) may play a crucial role in tumor progression and drug resistance by mediating interactions within the tumor microenvironment. This study aims to investigate the causal associations between CPLRs and papillary thyroid cancer (PTC), focusing on their potential implications in drug resistance mechanisms.

Methods: Genetic data for 2821 CPLRs were obtained from the GWAS and FinnGen databases.

View Article and Find Full Text PDF

Long-term forecast for antibacterial drug consumption in Germany using ARIMA models.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Hannover Medical School, Institute of Pharmacology, D-30625, Hannover, Germany.

The increasing supply shortages of antibacterial drugs presents significant challenges to public health in Germany. This study aims to predict the future consumption of the ten most prescribed antibacterial drugs in Germany up to 2040 using ARIMA (Auto Regressive Integrated Moving Average) models, based on historical prescription data. This analysis also evaluates the plausibility of the forecasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!