Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Luminescent thermochromic materials with a dramatic shift of emission band under different temperatures are highly desirable in temperature sensing fields. However, the design of the synthesis of such compounds remains a great challenge. In this work, two new luminescent thermochromic silver iodides, (emIm)AgI () and (emIm)AgI () (emIm = 1-ethyl-3-methyl imidazole), have been synthesized under solvothermal conditions. Compound features a [AgI] anionic layer, while compound possesses an infinite [AgI] chain structure, both of which are charge balanced by emIm cations. Particularly, they display luminescent thermochromism with a significant wavelength shift of emission maximum with temperature change. They represent rare examples of infinite layered or chain silver iodides that show luminescent thermochromism. Furthermore, the results indicate that compounds and are promising wavelength-dependent luminescent thermometers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.0c00606 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!