Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Low-dimensional perovskite-related metal halides have emerged as a new class of light-emitting materials with tunable broadband emission from self-trapped excitons (STEs). Although various types of low-dimensional structures have been developed, fundamental understating of the structure-property relationships for this class of materials is still very limited, and further improvement of their optical properties remains greatly important. Here, we report a significant pressure-induced photoluminescence (PL) enhancement in a one-dimensional hybrid metal halide CNHPbBr, and the underlying mechanisms are investigated using in situ experimental characterization and first-principles calculations. Under a gigapascal pressure scale, the PL quantum yields (PLQYs) were quantitatively determined to show a dramatic increase from the initial value of 20% at ambient conditions to over 90% at 2.8 GPa. With in situ characterization of photophysical properties and theoretical analysis, we found that the PLQY enhancement was mainly attributed to the greatly suppressed nonradiative decay. Pressure can effectively tune the energy level of self-trapped states and increase the exciton binding energy, which leads to a larger Stokes shift. The resulting highly localized excitons with stronger binding reduce the probability for carrier scattering, to result in the significantly suppressed nonradiative decay. Our findings clearly show that the characteristics of STEs in low-dimensional metal halides can be well-tuned by external pressure, and enhanced optical properties can be achieved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.0c07166 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!