Background: A biological concentrate was produced from cultures of an Avène aquatic microflora isolate, namely Aquaphilus dolomiae. Some of the beneficial effects on diseased and damaged skin are thought to be due to the presence of this microorganism.

Aims: An extract of A. dolomiae (A. dolomiae extract-G2, ADE-G2) was evaluated for its wound-healing effects using in vitro and ex vivo models of injured skin.

Methods: The effect of ADE-G2 on the proliferation of fibroblasts, migration of keratinocytes and re-epithelialization of ex vivo wounded skin explants was measured. Antimicrobial protection by ADE-G2 was measured by analysing the gene expression of a panel of antimicrobial proteins (AMPs) in keratinocytes (RNASE7, S100A7, DEFB4A/B and DEFb103B), as well as the protein encoded by DEFB4A-B (hBD2) in the medium.

Results: ADE-G2 increased fibroblast proliferation and keratinocyte migration, as well as re-epithelialization of wounded ex vivo skin. ADE-G2 induced the expression of all AMP genes analysed in keratinocytes, as well as stimulated the release in to the medium of hBD2 peptide, encoded by DEFB4A/B.

Conclusions: We have shown the broad spectrum of the repairing properties of the A. dolomiae extract, ADE-G2. These results support the use of ADE-G2 as a promising component for use in formulations aimed at repairing skin, limiting wound superinfection and preventing complicated wounds.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jdv.16477DOI Listing

Publication Analysis

Top Keywords

broad spectrum
8
spectrum repairing
8
repairing properties
8
aquaphilus dolomiae
8
in vitro ex vivo
8
ex vivo models
8
models injured
8
ade-g2
7
dolomiae
5
skin
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!