The glial cell line-derived neurotrophic factor (GDNF) and its canonical receptor Ret can signal both in tandem and separately to exert many vital functions in the midbrain dopamine system. It is known that Ret has effects on maintenance, physiology, protection and regeneration in the midbrain dopamine system, with the physiological functions of GDNF still somewhat unclear. Notwithstanding, Ret ligands, such as GDNF, are considered as promising candidates for neuroprotection and/or regeneration in Parkinson's disease, although data from clinical trials are so far inconclusive. In this review, we discuss the current knowledge of GDNF/Ret signaling in the dopamine system in vivo as well as crosstalk with pathology-associated proteins and their signaling in mammals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00441-020-03268-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!